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AVERTISSEMENT

La septième édition de nos Leçons nouvelles de Cos­
mographie?, que nous publions aujourd’hui, ne diffère 
des éditions précédentes que par quelques améliora­
tions de détail. Le plan de l ’ouvrage est resté le même. 
La première partie, consacrée à la description détaillée 
des phénomènes célestes et des lois qui les régissent, con­
tient l ’ensemble des connaissances exigées des candi­
dats au baccalauréat ès sciences et aux écoles du gou­
vernement. Les cinq livres dont elle se compose offrent 
le développement méthodique et complet du pro­
gramme prescrit parles arrêtés des 24 et 25 mars 1865. 
La seconde partie comprend, sous le titre d'Additions, 
une série de notes sur diverses questions astronomi­
ques utiles à connaître, mais dont l ’étude exige quel­
ques développements analytiques.

Le texte de la première partie a été revu avec soin. 
Nous donnons, page 32, un tableau extrait des Anna­
les de ï  Observatoire, contenant les ascensions droites et 
les déclinaisons des trente-six étoiles fondamentales, 
pour 1845, ainsi que leurs mouvements propres an­
nuels. Nous citons les noms et les hauteurs de quel­
ques montagnes de la lune. Nous complétons le tableau 
des planètes télescopiques, en énumérant celles qui ont



Vili AVERTISSEMENT,

été découvertes depuis l 'impression de F édition précé­
dente. Enfin nous énonçons à la fin de chaque livre, 
sous le titre d’Exercices et applications,quelques problè­
mes à résoudre. La plupart de ces questions exigent la 
connaissance des éléments de trigonométrie; mais 
toutes peuvent se résoudre, sans qu’on se serve de la 
trigonométrie sphérique, bien que l ’emploi des formu­
les relatives aux triangles sphériques en rende la solu­
tion plus facile et plus prompte.

Le programme de la licence ès sciences mathémati­
ques renferme un certain nombre de questions d’as­
tronomie, et les solutions de ces questions sont dissémi­
nées dans divers ouvrages. Nous avons souvent entendu 
les candidats à ce grade universitaire se plaindre de 
l ’embarras qu’ils éprouvaient à les réunir. Peut-être 
ces personnes trouveront-elles, dans les additions qui 
forment la seconde partie de notre livre, la réponse à 
la plupart des questions du programme.

Nous avons, pour obtenir ce résultat, modifié ou 
complété quelques-unes des notes, et nous serions 
heureux d’avoir ainsi procuré aux jeunes gens quelques 
facilités nouvelles pour leurs études. Si nous n’avons 
pas été plus loin, c’est que ce livre élémentaire a des 
limites qu’il ne nous est pas permis de dépasser,

H. G.
Juillet I8C9.
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INTRODUCTION

1. Définition de la cosmographie. — L’Astronomie a pour 
objet la recherche des lois qui régissent l’univers. Il n’est pas 
de science fondée sur l’observation dont l’étude approfondie 
offre des résultats plus utiles. Plus ancienne que toutes les 
autres, puisqu’elle a commencé, pour ainsi dire, avec le monde, 
cette science est le meilleur exemple des essais et des efforts 
qu’a laits l’intelligence humaine pour arriver progressivement 
à la découverte de la vérité. Armée d’instruments grossiers, 
elle ne constate d’abord que les premières apparences, et elle 
ébauche une théorie où l’erreur a nécessairement la plus large 
place. A mesure que ses méthodes se perfectionnent, à mesure 
que ses instruments acquièrent plus de précision, elle dé­
couvre de nouveaux faits, plus nombreux, plus difficiles à sai­
sir ; et elle construit des théories nouvelles, qui ne sont pas 
encore l’expression de la vérité, mais qui déjà s’en écartent 
moins. Lorsqu’enlîn ses procédés d’observation atteignent le 
plus haut degré d’exactitude, elle s’élève à la conception du 
vrai système du monde; elle trouve les lois générales des mou­
vements des corps célestes, et elle remonte jusqu’à leur cause, 
c’est-à-dire jusqu’à la connaissance des forces qui les produi­
sent. A ce point de vue, elle peut être proposée comme le 
modèle de toutes les sciences d’observation.

ccsu. o. I



O INTRODUCTION.

D’un autre côté, l’immensité de l’univers, dont elle recule les 
limites à des distances que l’imagination ne saurait concevoir, 
le nombre infini de corps dont elle suit les mouvements dans 
l’espace, non moins que la simplicité des lois auxquelles ces 
corps obéissent, tout atteste un ouvrier dont la puissance est 
sans bornes. En déroulant à nos yeux ce magnifique tableau, 
I’Astronomie nous invite naturellement à reconnaître et à glo­
rifier le créateur de ces merveilles ; et elle contribue ainsi, 
pour sa part, à l’éducation morale de l’homme.

Une science aussi utile doit, à tous ces titres, avoir sa place 
marquée dans l’enseignement de nos écoles publiques. Mais 
ses méthodes d’investigation ne sont pas toujours accessibles 
à de jeunes intelligences ; elles exigent souvent l’emploi de 
toutes les ressources que fournil l’analyse infinitésimale. Il 
n’est donc pas possible de les étudier et de les approfondir 
dans les cours élémentaires. C’est pourquoi la haute Com­
mission de l’instruction publique, en prescrivant, en 1852, 
l’étude de l’Astronomie dans les établissements universi­
taires, a voulu que ce cours fût purement descriptif ; et 
elle en a rédigé le programme sous le nom de Cosmogra­
phie.

La Cosmographie comprend l’exposition des mouvements 
des corps célestes, des lois auxquelles ils obéissent, des causes 
qui les produisent ; elle embrasse l’ensemble des .connais­
sances que l’on a pu acquérir sur les dimensions et les dis­
tances des astres et sur leur constitution physique ; en un mot, 
elle fait connaître l’univers tel qu’il apparaît aux yeux de la 
science moderne.



LIVRE PREMIER

LES ÉTOILES

MOUVEMENT DIURNE APPARENT DES ÉT O IL E S; MOUVEMENT RÉEL 

DE LA TERRE SUR ELLE-M ÊM E.

CHAPITRE PREMIER

ASPECT GÉNÉRAL DU CIEL.

Étoiles. — Distances angulaires. — Sphère céleste.

(2. Étoiles. — Lorsqu’un observateur se place, vers le soir, 
sur un lieu élevé d’où la vue peut embrasser une grande éten­
due dans tous les sens, il voit le soleil descendre peu à peu et 
bientôt disparaître. La nuit vient graduellement, et le ciel se 
parsème d’une infinité de points lumineux qu’on appelle des 
étoiles. Ces astres ne restent pas immobiles. Si l ’observateur a, 
vers sa droite, la région du ciel où le soleil vient de se coucher, 
il reconnaît que les étoiles, partant de la région opposée (la 
gauche), s’élèvent à des hauteurs plus ou moins grandes, puis 
descendent et finissent par disparaître dans la môme région 
que lui. D’autres étoiles se lèvent à leur tour vers la gauche, 
suivent la môme marche que celles qui les ont précédées, et 
se couchent comme elles vers la droite. Quelques-unes d’entre 
elles demeurent visibles pendant quelques instants seulement, 
et se couchent presque aussitôt après leur lever. Si l’observa­
teur se tourne du côté opposé, il voit se produire la môme sé­
rie de phénomènes; il aperçoit de plus, en face de lui, des 
étoiles qui ne se couchent pas, et qui restent visibles pendant 
toute la durée de la nuit ; il en reconnaît môme une parmi elles 
qui semble immobile, et autour de laquelle les autres parais­
sent tourner. Au bout d’un certain temps, le ciel blanchit ; la



lumière des étoiles s’affaiblit, s’éteint; le jour commence; fe 
soleil se lève à son tour, parcourt une courbe semblable à 
celles que décrivent les autres astres, et disparaît comme la 
veille ; puis les étoiles reparaissent, et les mômes phénomènes 
se reproduisent.

On peut d’ailleurs observer, à l’aide de lunettes, les étoiles 
en plein jour, et reconnaître que leur mouvement se poursuit 
dans les mômes conditions que pendant la nuit.

Ce mouvement général, commun à tous les astres, constitue 
ce qu’on appelle le mouvement diurne.

5. Distances angulaires. — Lorsqu’on étudie, pendant plu­
sieurs nuits, les phénomènes qui viennent d’être exposés, on 
reconnaît promptement que les étoiles, dans leur mouvement, 
ne changent pas de positions relatives, et que les groupes 
qu’elles forment présentent toujours les mêmes figures.

Ainsi la distance angulaire de deux étoiles quelconques, 
c’est-à-dire l’angle formé parles deux droites menées de l’œil 
à ces astres, ne varie pas pendant leur révolution diurne. On 
s’en assure en visant les deux étoiles à l’aide d’un instrument 
composé de deux pinnules ou de deux lunettes mobiles autour 
d’un môme centre et réunies par un arc gradué. Quel que soit 
le moment de leur révolution que l’on choisisse, l’arc com­
pris entre les deux rayons visuels est toujours le même. De 
plus, quelle que soit la position qu’occupe l’observateur à la 
surface de la terre, il peut se convaincre que la distance an­
gulaire de deux étoiles a partout la même valeur.

4 . Sphère céleste. — Cela posé, concevons une sphère im­
mense, dont l’œil de l’observateur occuperait le centre, et 
projetons les étoiles sur la surface de cette sphère. Puisque les 
distances angulaires sont invariables, nous pouvons considérer 
le mouvement des astres comme un mouvement d’ensemble 
équivalent à une certaine rotation de la sphère céleste autour 
de son centre. Cette rotation fait passer alternativement les 
astres de la région que nous cache la surface de la terre dans 
celle qui est visible pour nous, et de celle-ci dans la première : 
elle produit ainsi le phénomène du lever et du coucher.

Cette conception mécanique peut-elle être acceptée ? C’est

4 LIVRE T. —  LES ÉTOILES.



ce que nous fera connaître l ’étude approfondie des lois de ce 
mouvement.

5 . Variations des distances angulaires. — Disons cependant 
que les étoiles ne sont pas rigoureusement immobiles sur la 
sphère céleste en mouvement : elles ont des mouvements pro­
pres, mais ces mouvements sont très-faibles. Ainsi, parmi 
ceux que l’on connaît, l’un des moins lents est celui de la 61 
étoile du Cygne, qui parcourt par an, et toujours dans le même 
sens, un petit arc de 5",12 (1). On trouve dans les Annales de 
l'Observatoire de Paris les mouvements propres, rigoureuse­
ment obtenus, des 36 étoiles dites fondamentales. Bien que ces 
mouvements ne soient connus avec précision que pour un 
petit nombre d’étoiles, il est hors de doute que toutes en sont 
affectées. Il en résulte que les distances angulaires ne peu­
vent pas être regardées comme rigoureusement constantes 
(V. n° 42).

CHAPITRE I I . —  LOIS DU MOUVEMENT DIURNE. 5

CHAPITRE II

LOIS DU MOUVEMENT DIURNE.

Mouvement diurne apparent des Étoiles. — Culmination : plan méridien. — 
Axe du monde, Pôles. — Étoiles circumpolaires, Étoile polaire. — Hauteur 
du pôle à Paris. — Parallèles, Équateur. — Jour sidéral.

§  I. —  PREMIÈRE ÉTUDE DES LOIS DO MOUVEMENT DIURNE.

G. Verticale. — On appelle verticale d’un lieu, à la surface 
de la terre, la direction de la pesanteur en ce lieu. Celte di­
rection est normale, c ’est-à-dire perpendiculaire à la surface 
des eaux tranquilles. On la détermine au moyen d’un petit 
appareil appelé fil à plomb, qui se compose essentiellement 
d’un corps pesant, suspendu à l’une des extrém ités d’un fil 
flexible et très-fin; on attache l’autre extrémité du fil à un

(t) En réalité, l’étoile parcourt 64 kilomètres par seconde.



support fixe, et on abandonne l’appareil à lui-même. Lorsqu’il 
est en équilibre, la direction du fil tendu par le corps pesant 
est celle de la pesanteur.

7. Z énith, Nadir. — La verticale perce la sphère céleste en 
deux points opposés : l’un, situé au-dessus de nos têtes et visi­
ble, est appelé Zénith ; l’autre, invisible, est appelé Nadir.

V ertical. — Tout plan mené suivant la verticale coupe la 
sphère suivant un grand cercle, et s’appelle un plan vertical, 
ou simplement un vertical.

8. H o r i z o n . — Tout plan perpendiculaire à la verticale se 
nomme plan horizontal, et toute droite tracée dans ce plan est 
une droite horizontale. Parmi les plans horizontaux, celui qui 
passe par l’œil de l’observateur s’appelle Y Horizon: ce plan 
coupe la sphère céleste suivant un grand cercle ; il sépare la 
partie visible du ciel de la partie invisible, lorsque l’observa­
teur est à la surface môme de la terre.

Mais lorsque celui-ci s’élève è. une certaine hauteur au-des­
sus de cette surface, la partie visible du ciel s’agrandit, les 
rayons visuels tangents à la surface terrestre forment un cône 
au-dessous de l’horizon ; l’angle que chacun d’eux fait avec ce 
plan s’appelle la dépression de l’horizon apparent, ou simple­
ment la dépression apparente ; cet angle est toujours fort petit. 
La courbe de contact du cône et de la terre se nomme l’hori­
zon sensible.

Le plan parallèle à l’horizon, et qui passe par le centre de 
la terre, se nomme horizon rationnel ou astronomique.

Pour rendre un plan hori­
zontal, on emploie un ni­
veau (I).

O. Azimut, hauteur appa­
rente. — Cela posé, concevons 
que l’horizon soit représenté 
par le grand cercle SONE 
(fig. 1), l’hémisphère visible 
par NZS, et la verticale du 

lieu d’observation par TZ. Soit A la position d’une étoile sur
(1) Voir la description et l’usage du niveau dans les traités de physique.

c LIVRE I .  —  LES ÉTOILES.



la sphère, à un instant donné ; si l’on mène un plan par le 
point A et par la droite TZ, ce plan coupe la sphère suivant 
un grand cercle, dont le quadrant ZAH se nomme le vertical 
de l’astre.

On appelle azimut de l’astre, l’angle que ce vertical fait avec 
un vertical fixe ZTS, choisi arbilrairement; cet angle est me­
suré par l’angle STH que forment les traces horizontales des 
deux plans, ou par l’arc SH intercepté entre ces traces : il se 
compte, à partir de S, dans le sens SONE, indiqué parla flèche, 
et prend toutes les valeurs, de 0° à 360°.

On appelle hauteur apparente de l’astre A au-dessus de l’ho­
rizon, l’angle ATH que forme avec l’horizon le rayon visuel 
mené à l’astre : elle est mesurée par l’arc HA intercepté sur 
le vertical entre ses côtés, et elle se compte de l’horizon au 
zénith Z, depuis 0° jusqu’à 90°. L’angle ZTA, compris entre la 
verticale TZ et le rayon TA, est la distance zénithale apparente 
de l’astre : c’est le complément de la hauteur. Cette distance 
est mesurée par l’arc ZA, compris aussi sur le vertical entre 
ses côtés, et se compte du zénith à l’horizon, depuis 0° jus­
qu’à 90°.

La position d’un astre A sur la sphère céleste, à un instant 
donné, est complètement déterminée, quand on connaît, pour 
cet instant, son azimut a et sa hauteur h, ou sa distance zéni­
thale Z. Car, si l’on porte sur le cercle horizontal SONE, dans 
le sens de la flèche, un arc SH égal à a, le vertical HZ, mené 
par l’extrémité H, sera évidemment le vertical de l’astre ; et si 
l’on prend sur ce quart de cercle un arc HA =  h, ou un arc 
Z A =  Z, le point A sera la position apparente de l ’astre sur 
la sphère.

10. Instruments tour mesurer ces deux coordonnées. — On 
mesure ces deux coordonnées à l’aide d’instruments spé­
ciaux, appelés théodolite, quart de cercle, etc. Réduits à leur 
plus simple expression, ces instruments (fig. 2) comprennent : 
f° un cercle métallique SONE, gradué à partir du point S, et 
appelé cercle azimutal; 2° un axe TZ perpendiculaire au plan 
de ce cercle et passant par son centre; 3° un second cercle 
CK, mobile autour de l’axe TZ, qui est un de ses diamètres,

CHAPITRE I I . —  LOIS DU MOUVEMENT DIURNE. 7
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et gradué à partir du point Z : il se nomme cercle vertical; 
4° une alidade TH, perpendiculaire à l’axe TZ, située dans le

plan du cercle CK, mobile avec lui 
autour de l’axe, et qui décrit, en 
tournant autour du centre T, le 
cercle azimutal ; 5° enfin une lu­
nette, dont l’axe optique CA' se 
meut autour de C dans le plan du 
cercle vertical, et qui porte un 
vernier destiné à mesurer sur ce 
cercle l’angle qu’elle fait avec TZ.

Pour se servir de l’instrument, 
on le dispose de manière que le 
cercle azimutal soit horizontal, et 
que la ligne TS soit dirigée vers le 
point de l’horizon qu’on a choisi 

pour origine des azimuts; alors l’axe TZ est vertical. Puis on 
dirige le cercle vertical et la lunette située dans son plan, de 
telle sorte que l’étoile à observer, A, soit sur le prolongement 
de l ’axe optique. On lit alors sur le cercle vertical l’angle 
ZCA', qui est la distance zénithale, et sur le cercle azimutal 
l’angle STH, qui est l’azimut de l’astre.

l i .  Lois du mouvement diurne. —  Supposons que l’on ait
mesuré, pour une môme 
étoile A, à diverses épo­
ques de son mouvement 
diurne, son azimut et sa 
hauteur; soient a, et 
et As, a, et h,,.... les résul­
tats obtenus. On pourra 
construire, sur un globe 
de carton, le lieu des posi­
tions successives de l’astre. 
Car, si l’on prend un point 
Z de sa surface pour re­
présenter le zénith (lig. 3); 

si du point Z comme pôle on trace un grand cercle SONE qui



représentera l’horizon, et si l’on choisit sur ce cercle un point 
S pour origine des azimuts, les procédés de la géométrie élé­
mentaire permettront de porter successivement sur ce cercle 
les arcs 8011, =  0,, SOH2 =  «„ SOIJ, =  «„... puis de tracer 
les arcs de grand cercle, Zll„ ZHS, ZII,,... et de porter sur 
ceux-ci les arcs H,A, =  h„ II,A, = / /„  H3A, =  /i8...; il est clair 
que A,,AS,A,... seront les positions successives de l’étoile. 
Or, si l’on fait passer un cercle par trois de ces positions, on 
trouve qu’il passe sensiblement par toutes les autres positions 
de l’astre : d’où l’on conclut que l’étoile décrit réellement un 
cercle de la sphère. Si, de plus, on a mesuré, au moyen d’un 
mouvement uniforme quelconque, les temps employés par 
l’étoile à parcourir les arcs A, A2, A8A8!... on reconnaît que 
ces arcs sont proportionnels aux temps, c’est-à-dire que le 
mouvement est uniforme. Lorsqu’on construit ensuite, d’une 
manière analogue, la courbe décrite par une autre étoile B, 
on trouve la môme loi du mouvement circulaire et uniforme. 
En outre, on reconnaît que les deux cercles ont le môme pôle 
géométrique P; on fixe d’ailleurs la position de ce pôle par 
son azimut et par sa hauteur. Les étoiles tournent donc au­
tour du môme axe. On s’assure enfin que la durée de la rota­
tion est la même pour toutes les étoiles. De ces diverses cons­
tructions on est fondé à conclure que :

Les étoiles ont un mouvement de rotation uniforme, dans le 
même sens et dans le même temps; elles décrivent, autour d'un axe 
unique incliné à l'horizon et passant par l'œil de l'observateur, 
des circonférences de rayons différents, dont les centres sont sur 
l axe, et dont les plans sont perpendiculaires à l’axe, comme si 
elles étaient fixées à la surface de la sphère céleste et en­
traînées par elle dans son mouvement de rotation autour de 
nous.

On résume quelquefois les lois du mouvement diurne sous 
la forme suivante :

1° Le mouvement est circulaire;
2° Il est uniforme ;
3 11 est parallèle, c’est-à-dire que les plans des cercles diur­

nes décrits par les étoiles sont parallèles ;

CHAPITRE I I .  —  LOIS DU MOUVEMENT DIURNE. 9
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\° Il est isochrone, c’est-à-dire que toutes les étoiles exécu­
tent leur révolution dans le même temps;

S» Il est invariable, c’est-à-dire que les positions relatives 
restent les mêmes;

6° Il est rétrograde, comme nous allons l’expliquer.
12. Sens du mouvement. — L’observateur qui veut préciser, 

en Astronomie, le sens d’un mouvement de rotation autour 
d’un axe, ou de translation curviligne dans un plan, doit se 
placer par la pensée le long de l’axe du mouvement, la tête 
dirigée vers l’étoile immobile (étoile polaire); il voit alors le 
mobile passer devant lui en allant de sa droite vers sa gauche, 
ou de sa gauche vers sa droite : le premier sens est celui que 
l’on est convenu, en Astronomie, l’appeler sens direct ; le se­
cond est le sens rétrograde.

On voit aisément, d’après ces conventions, que le mouvement 
des étoiles est rétrograde. 11 suffit, pour s’en convaincre, de se 
reporter à la figure 3, de se placer la tête en P, les pieds en T, 
et de remarquer que l’étoile A va de A, en A2, c’cst-à-dire de 
gauche à droite. On dit encore que ce mouvement est dirigé 
d'orient (lever) en occident (coucher), et que le mouvement di­
rect est, par sifite, dirigé d'occident en orient.

Nous emploierons comme synonymes, dans ces leçons, les 
mots mouvement direct, ou de droite à gauche, ou d’occident 
en orient, et comme synonymes aussi, ceux de mouvement ré­
trograde, ou de gauche d droite, ou d’orient en occident.

§ II. — D euxième étude DES LOIS du mouvement diurne.

15. Marche a suivre pour vérifier ces lois. — La démon­
stration que nous venons de donner des lois générales du mou­
vement diurne est affectée des petites erreurs inséparables des 
constructions graphiques de cette nature. Il ne faut donc pas 
la considérer comme complète : on doit, au contraire, la 
contrôler par toutes les vérifications que peuvent nous fournir 
l’expérience et le calcul. Or, pour mettre ces vérifications en 
lumière, nous supposerons, pour un instant, que la loi qu’il 
s’agit de démontrer existe ; nous déduirons de cette hypo­
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thèse les conséquences géométriques qu’elle comporte; et si 
nous pouvons ensuite, à l’aide d’instruments appropriés ou 
avec le secours de l’analyse, prouver que ces déductions sont 
des faits réels, nous aurons mis ainsi hors de doute la belle 
loi qui les a données.

14. Ax e , pôles, méridiens célestes. — En admettant, pour 
un instant, la loi du mouvement duirne comme réelle, nous ap­
pellerons axe du monde le 
d iamètre idéal PP' (fîg \  ■. 
autour duquel tourne la 
sphère céleste. Les pô­
les sont les points où 
cette droite rencontre la 
sphère : le pôleP, situé au- 
dessus de notre horizon 
NESO, est le pôle boréal 
ou arctique, ou encore le 
p ô le  élevé; le  pô le  P', in v i­
sible pour nous, est le pôle 
austral, ou antarctique, ou 
abaissé. Tout plan passant par l’axe des pôles coupe la sphère 
suivant un grand cercle appelé méridien céleste.

13. E quateur, parallèles. —  É toiles circumpolaires. —  
É toile polaire. — Le plan mené par le centre T, perpendicu­
lairement à l’axe, coupe la sphère suivant un grand cercle 
E5 Ej’ appelé équateur céleste ; il sépare Y hémisphère austral 
EmEg de Yhémisphère boréal E,ZE?'. Les sections, telles que 
AA', BB',... faites par des plans perpendiculaires à l’axe, sont 
des petits cercles qu’on nomme parallèles célestes ou cercles 
diurnes. Ce sont les cercles que décrivent les étoiles dans leur 
révolution diurne. Certains d’entre eux, AA' par exemple, 
coupent l’horizon suivant une droite CL ; ils appartiennent 
aux étoiles qui se lèvent (en L) et qui se couchent (en C). 
D’autres, plus voisins du pôle (BB' par exemple), sont tout 
entiers au-dessus de l’horizon; les étoiles qui les parcourent 
restent toujours visibles pour nous, même en plein joui 
(à l’aide de lunettes) ; on les nomme étoiles circumpolaires.
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L’une de ces dernières, appelée étoile polaire, n’cftt qu’à 1° 28' 
du pôle P; le cercle qu’elle décrit est si petit qu’elle paraît 
immobile; sa position, facile à reconnaître (n°44), indique à 
la vue le pôle boréal.

IG. Plan méridien. —  Culmination. — Parmi les plans que 
l’on peut mener par le point T, l’un des plus importants à 
connaître est le plan méridien. On nomme ainsi le plan qui 
passe par l’axe PP’ et par la verticale TZ (fig. 4) ; ce plan est 
fixe, et dans le mouvement de la sphère céleste, les divers mé­
ridiens célestes viennent successivement se confondre avec lui.

Les propriétés de ce plan sont les suivantes :
1° Il est perpendiculaire à l'horizon, puisqu’il contient la ver­

ticale TZ ; il est aussi perpendiculaire à l'équateur et à tous les 
parallèles, parce qu’il contient l’axe PP'.

2° Il partage l'horizon, l'équateur et tous les parallèles en deux 
parties égales, puisqu’il contient l’axe sur lequel sont situés 
les centres de tous les cercles. Les droites NS, AA', BU', 
E?E,'... sont donc des diamètres de ces cercles.

3° Il partage en deux parties égales la partie LAC de chaque 
parallèle qui est située au-dessus de /’horizon, ainsi que la partie 
LA'C située au-dessous, c’est-à-dire, LA == AC, et LA' =  A'C. 
En effet, le cercle diurne LAÇA' et l ’horizon NESO étant per­
pendiculaires tous deux au méridien, leur intersection LC est 
aussi perpendiculaire à ce plan; elle est perpendiculaire, par 
suite, à toute droite telle que AA', NS, etc., qui passe par son 
pied G dans ce plan. Donc AA' est un diamètre perpendicu­
laire sur la corde LC ; donc il partage les arcs sous-tendus 
LAC, LA'C en deux parties égales.

Remarquons que, en vertu de la môme démonstration, le 
diamètre NS, perpendiculaire sur la corde LC, partage l’arc 
LNC ou l’angle LTC en deux parties égales; il est donc la bis- 
esectrice de l'angle des rayons visuels TL, TC, menés aux points d 
lever et de coucher dé une même étoile.

4° Il contient le point de chaque parallèle qui est le plus élevé 
au-dessus de l'horizon, c’est-à-dire que la hauteur AS du point 
A située dans le méridien (fig. 5) est plus grande que celle 
de tout autre point B du parallèle. En effet, menons par le



c i t a h t h e  it . —  LOIS DU m o u v e m e n t  d i u r n e . 13

point B le vertical ZBH et le grand cercle PBD, nous aurons 
PB < P Z  +  ZB; or PA =  PB ; donc PA < P Z  -}-ZB; 0u, en re­
tranchant PZ de part et 
d’autre, ZA <Z B  ; donc le

du zénith que le point B ; rjo, b
donc, s’il est au-dessous
de l’horizon, ce point est le plus abaissé ; et, s’il est au-des­
sus, il est le plus près de ce plan.

O n  f e r a  u n e  d é m o n s t r a t i o n  a n a l o g u e  p o u r  l e  c a s  o ù  le  p o i n t  
A  e s t  e n t r e  Z  e t  P .  C e  p o i n t  A s e  n o m m e  p o i n t  culm inant.

5° Il partage en deux parties égales le temps qui s'écoule entre 
le lever d’une étoile et son coucher. En effet, le mouvement 
diurne est uniforme, d’après notre hypothèse ; donc les arcs 
égaux LA, AC (fîg. 4) doivent être parcourus en des temps 
égaux. Remarquons en outre que le plan méridien est le seul 
des plans verticaux qui jouisse de cette importante propriété ; 
car il est le seul qui contienne le centre I du cercle diurne.

Il résulte de ce qui précède que chaque étoile passe deux 
fois au méridien pendant la durée d’une révolution : le pas­
sage supérieur est en A, et le passage inférieur en A'. Les deux 
passages sont visibles quand il s’agit d’une étoile circumpo­
laire, comme celle qui parcourt le parallèle BB' (fîg. 4) ; dans 
ce cas, le méridien partage en deux parties égales la durée 
totale de la révolution de l’étoile. Le passage supérieur des 
autres astres est seul visible.

i  7 . Méridienne. —  P erpendiculaire. — P remier vertical. — 
La droite NS, intersection du méridien et de l’horizon (fîg. 4), 
se nomme la méridienne du lieu. La droite EO, intersection de

p o i n t  A  e s t  p l u s  r a p p r o c h é  

d u  z é n i t h  q u e  l e  p o i n t  B. 
D ’a i l l e u r s ,  Z S = Z H  ; il  f a u t  

d o n c ,  p a r  c o n t r e ,  q u e  l ’o n  

a i t  AS>BH.
On voit aussi que ZB<< 

PB +  PZ, ou ZB <  PA'-j- 
PZ, ou ZB <C ZA' ; donc le 
point A' est plus éloigné

s



D’autres bissectrices donnent des points intermédiaires appe­
lés N.N.E., entre le nord et le nord-est ; E.N.E. entre l’est et 
le nord-est, etc. Enfin, de nouvelles bissectrices donnent le

LIVRE i. LES ETOILES.

l’équateur et de l’horizon, est, comme LC, perpendiculaire à 
NS ; on la nomme, en astronomie, la perpendiculaire. Le plan 
qui passe par la verticale TZ et par la perpendiculaire EO 
s’appelle le premier vertical; il est perpendiculaire au mé­
ridien.

18 . Points cardinaux. — Rose des vents. — La méridienne 
perce la sphère céleste en deux points opposés N et S, dont le 
premier, situé du côté du pôle boréal, est le nord ou le sep­
tentrion, et le second est le sud ou le midi. La perpendiculaire 
détermine aussi deux points opposés E et O, appelés est ou 
orient, et ouest ou occident. Ces quatre points sont les points 
cardinaux. Le point S est ordinairement choisi pour origine 
des azimuts (n° 9). Ainsi les azimuts ne se comptent pas à 
partir du premier vertical.

Si l’on partage en deux parties égales les quatre angles 
droits formés par la méridienne et par la perpendiculaire, les 
extrémités des bissectrices portent les noms de nortf-esr (N. E.), 
de sud-est (S. E.), de sud-ouest (S. O.), de nord-ouest (N. O.).

*  ^  ' ' k■•r» ,.v>;



point N |N.E entre le nord et le nord-nord-est; le point
N.E.^N. entre le nord-est et le nord-nord-est; le point N.E.^E 
entre le nord-est et l’est-nord-est ; le point E .JN.E entre l’est 
et l’est-nord-est, etc. Cet ensemble constitue la rose des vents 
(fig. 6), dont les marins se servent pour indiquer la direction 
du vent.

19. Détermination du méridien. —  Lunette méridienne. — 
Exposons maintenant la méthode à laquelle conduisent les 
propriétés précédentes pour déterminer rigoureusement le 
méridien d’un lieu. 11 suffit évidemment pour cela de fixer la 
direction de la méridienne; car le plan vertical qui la con­
tient est le méridien. Or, on obtient une première approxima­
tion pour la direction de la méridienne en menant sur le ter­
rain des droites vers les points de lever et de coucher d’une 
même étoile, et en traçant la bissectrice de l’angle qu’elles 
forment entre elles (n° 16, 3°). On construit alors, de part et 
d’autre de cette bissectrice, deux montants en maçonnerie, 
sur lesquels on place les deux extrémités de l’axe de rotation 
d’une lunette. Puis, au moyen d’une vis qui permet d’élever 
ou d’abaisser lentement l’une des extrémités de l’axe, on éta­
blit l’horizontalité parfaite de cet axe; alors la lunette, qui lui 
est perpendiculaire, décrit nécessairement, dans son mouve­
ment autour de lui, un plan vertical. Pour faire coïncider ce 
plan avec le méridien, on dirige la lunette vers la région du 
pôle nord, et l’on observe avec elle le passage, à la croisée des 
fils, d’une étoile qui ne se couche pas. Une horloge, réglée sur 
un mouvement uniforme quelconque, permet de mesurer les 
temps qui s’écoulent, d’abord entre le passage supérieur et le 
passage inférieur, puis entre ce dernier et le passage supé­
rieur suivant. Si ces deux durées se trouvaient rigoureuse­
ment égales, on en conclurait que le plan décrit par la lu­
nette est celui du méridien (n° 16,3°) ; mais il arrive d’ordinaire 
qu’elles diffèrent un peu ; on comprend qu’il est possible, au 
moyen d’une autre vis, de faire tourner l’axe dans le sens con­
venable, sans qu’il cesse d'être horizontal, de manière à ame­
ner l’égalité parfaite des durées, après un certain nombre de 
tâtonnements. Lorsqu’on a obtenu celte position, on maçonne
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l’appareil, de manière que la lunette ne puisse plus se mou­
voir que dans le plan vertical du méridien ; et l’on construit, 
dans la direction de la méridienne, une mire, qui sert de re­
père pour vérifier, lors de chaque observation, la permanence 
du plan décrit par la lunette (t).

Cet instrument, l’un des plus utiles en astronomie, se 
nomme la lunette méridienne, ou l'instrument des passages. Il 
sert exclusivement à observer les passages des astres au mé­
ridien. L’intérieur de la lunette porte un réticule, composé 
de deux fils diamétraux perpendiculaires entre eux; l'axe 
optique est indiqué par le point d’intersection des fils, et c’est 
derrière ce point qu’il faut amener l’étoile qu’on veut obser­
ver. D’autres fils perpendiculaires partagent ordinairement le 
diamètre horizontal en six parties égales; on reconnaîtra plus 
tard l’utilité de cette disposition pour la précision des obser­
vations.

2 0 . Cercle mural. — Cet instrument, réduit à sa plus simple 
expression, consiste en un grand cercle ABCD (fig. 7), divisé 
avec précision sur sa tran­
che, et dirigé exactement 
dans le plan du méridien.
Une lunette L, fixée au cer­
cle suivant un de ses dia­
mètres AC, peut tourner 
avec lui autour d’un axe 0, 
perpendiculaire à son plan.
A cet effet, le cercle est 
monté sur un essieu qui tra­
verse un mur très-solidet 
contre lequel il est appliqué 
de là le nom de cercle mural). Un index I, fixé au mur, sert 
de repère pour les lectures.

Yoici comment on opère.
Veut-on mesurer la distance angulaire de deux étoiles E, E', 

qui passent en môme temps au méridien, on fait tourner le
(1) A Paris, la lunette méridienne de l'Observatoire a une seule mire, si­

tuée au sud, à 40 ou 50 mètres de distance.

IG LIVRE I .  —  LES ÉTOILES.'
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cercle de manière que l’étoile E vienne derrière la croisée des 
(ils de la lunette, et l’on fait la lecture de la division qui cor­
respond à l’index I ; on obtient ainsi l’angle AOI. Puis on 
amène l’étoile E' derrière la croisée des fils, et une seconde 
lecture donne l ’angle A'OI. La différence des deux lectures, 
AOI —  A'OI, est la distance angulaire cherchée AOA'.

Le cercle mural sert encore à déterminer la distance zéni­
thale méridienne ou la hauteur méridienne d’une étoile E. Pour 
l’obtenir, quelques m oments avant le passage, on dirige l’axe 
de la lunette vers le nadir, ce qui se fait aisément à l’aide 
d’un bain de mercure placé sous le cercle; la lecture de la di­
vision correspondante à l ’index donne l ’arc IZN. Puis on fait 
tourner le cercle, et l’on amène l’étoile E derrière la croisée 
des fils; la seconde lecture donne l’arc IA ; la différence donne 
l’arc AN ou l’angle AON dont l’appareil a tourné, c ’est-à-dire 
la distance de l’astre au nadir. Le supplém ent de cet angle est 
la distance zénithale cherchée AOZ, et le com plém ent de cette 
distance est la hauteur m éridienne.

2 1 .  H auteur du pôle. —  On peut, à l’aide du cercle mural, 
déterminer la hauteur du pôle au-dessus de l’horizon. On m e­
sure à cet effet les hauteurs méridiennes d’une môme étoile qui 
ne se couche pas, lors de ses deux passages, et on prend leur 
dem i-somm e. En effet, soient (fig. 4, p. 11) B et B' les deux 
passages de l ’étoile observée; les deux hauteurs mesurées sont 
BN et B'N. Or BN =  PN + B P ,  et B'N =  PN — B'P; et comme 
BP =  B'P, l ’addition donne BN +  B'N =  2PN, d’où PN =  
BN 1 b 'n
—— - — — . Ainsi, PN ou la hauteur du pôle au-dessus de l ’hot'i-

zon est la moyenne arithmétique des hauteurs méridiennes d’une 
étoile qui ne se couche pas,  et elle se détermine aisément avec 
le cercle mural. On trouve qu’à l’Observatoire de Paris, la 
hauteur du pôle est 48° 50' 11".

Si, au lieu de mesurer les hauteurs au-dessus de l’horizon, 
on a mesuré les distances zénithales ZB et ZB', on voit facile-

Z  B  -4- Z  B '
ment que la distance zénithale du pôle P e s t ----———  ; et la

2
hauteur du pôle est le complément de celte distance.

cosm. g . 2



2 2 . VÉRIFICATION DES LOIS DU MOUVEMENT DIURNE. — ÉQUATO­
RIAL ou MAcniNE parallatique. — Telles sont les principales 
conséquences géométriques, et les plus importantes détermi­
nations expérimentales qui résultent de la loi générale admise 
au n° 13. Il nous reste maintenant à les vériüerpar le calcul, 
ou à les soumettre au contrôle de l’expérience. D’abord, si, 
après avoir déterminé le méridien à l’aide d’une certaine 
étoile (n° 19), on mesure, au moyen de la lunette méridienne 
et d’une horloge bien réglée, les heures exactes des passages 
au méridien de toute autre étoile qui ne se couche pas, on re­
connaît que les intervalles des passages sont rigoureusement 
égaux; donc il existe réellement un plan vertical qui partage 
la durée de la révolution de chaque étoile en deux parties 
égales. En second lieu, si l’on applique la mesure des hauteurs 
méridiennes fournies par le cercle mural à la détermination 
de la hauteur du pôle, on trouve que toutes les étoiles cir­
cumpolaires donnent le même nombre (pourvu que l’on cor­
rige chacune de ces mesures de l’erreur due à la réfraction, 
comme on le verra plus lard) ; il existe donc, dans le plan du 
méridien, un axe autour duquel toutes les étoiles exécutent 
leur rotation diurne.

Ce mouvement, enfin, est-il réellement circulaire et uni­
forme? Pour le constater par l’expérience, on emploie un 
appareil complètement analogue à celui qui est décrit au n° 10, 
et dont la figure2 contient les éléments. Seulement l’axe TZ, au 
lieu d’être vertical, est dirigé suivant l’axe du monde ; et, par 
suite, le cercle SONE, qui lui est perpendiculaire, représente 
le plan de l’équateur. Pour se servir de cet instrument, qu’on 
appelle machine parallatique, après l’avoir orienté convenable­
ment, on fait tourner le cercle mobile CK et la lunette CA' 
dans son plan, de manière à viser une étoile ; puis on assu­
jettit la lunette au cercle CK, de telle sorte que son angle A'CZ 
avec l’axe reste invariable dans son mouvement. On remarque 
alors 1° que, pour suivre l’étoile dans sa marche, il suffit de 
faire tourner le cercle CK autour de l’axe, sans déplacer la 
lunette; donc la distance polaire de l’astre, mesurée par l’an­
gle invariable A'CZ. ne change pas; en d’autres termes, Tastre
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décrit un cercle dont le pôle céleste est le lieu géométrique. On 
remarque 2°, en associant une horloge à la machine et en 
commençant les observations au moment où l’étoile est dans 
le plan STC, que l’angle dièdre formé par ce plan avec une 
position quelconque du cercle CK, angle mesuré sur l’équa­
teur par l’angle STH, ou par l’arc SH, est proportionnel au 
temps écoulé; et, comme l’arc décrit par l’étoile sur son pa­
rallèle est semblable à SH, on en conclut que l’astre décrit 
des arcs proportionnels aux temps, c’est-à-dire, que le mou­
vement est uniforme.

2 3 .  Remarque. — La vérification que nous venons de faire 
est la seule démonstration que nous devions donner dans ces 
Leçons élémentaires. Nous renvoyons à la note I, placée à la 
fin du volume, ceux denos lecteurs qui voudraient connaître 
la démonstration analytique des lois du mouvement diurne.

2 4 .  Autre remarque. — Bien que nous ayons employé, dans 
les démonstrations qui précèdent, les arcs tracés sur la sphère 
idéale, on com prend que ces dém onstrations ne supposent 
pas pour cela l’existence de cette sphère; car ces arcs ne sont 
ici que les mesures des angles formés par les rayons visuels 
menés à l’astre, au pôle, au zénith; et ce sont ces angles seuls 
dont les valeurs interviennent dans nos raisonnements.

§ III. — Mesure do temps.

2 5 .  J our sidéral, ses divisions. — Le mouvement diurne 
va nous fournir le meilleur moyen de mesurer le temps. En 
effet, si l’on connaissait un mouvement dont les phases di­
verses se reproduiraient exactement dans le même ordre et 
auraient toutes la même durée, chacun de ces intervalles 
pourrait évidemment servir d'unité de temps. Par exemple, les 
petites oscillations d’un pendule ont, d’après les lois de la mé­
canique, une durée constante, quelle que soit leur amplitude; 
chacune d'elles peut donc être prise pour unité, et leur nom­
bre est la mesure du temps écoulé. C’est par des mouvements 
de cette nature que nous avons pu mesurer le temps, dans 
les vérifications exposées au n° 22, Or, si l’on observe les pas-

CHAPITRE II. —  LOIS DU MOUVEMENT DIURNE. 10



20 LIVRE I . —  LES ÉTOILES.

sages supérieurs consécutifs d’une même étoile au méridien, 
on reconnaît, comme il a déjà été dit, que l’intervalle de ces 
passages a une durée rigoureusement constante pour cette 
étoile, et que cette durée est la même pour toutes. La durée 
de la révolution diurne d’une étoile est donc invariable; elle 
est aujourd’hui ce qu'elle était il y a deux mille ans. On peut 
donc, à bon droit, la prendre pour unité de temps ; c’est à 
celte unité qu’on donne le nom de jour sidéral.

On partage le jouren 24 heures sidérales, l’heure en 60 mi­
nutes sidérales, la minute en 60 secondes sidérales, etc., de 
sorte que le jour vaut 1440 minutes, ou 86400 secondes. Pour 
l’évaluer commodément, on fait osciller un pendule pendant 
un jour, et l’on compte le nombre n de ses oscillations ; comme 
on connaît la longueur l du pendule simple qui ferait le même 
nombre d’oscillations, on en déduit la longueur ï  du pendule 
simple qui fait 86400 oscillations par jour sidéral, à l’aide de 
la formule (démontrée en physique),

rfi
1 ~  1 X  86400»’

On trouve ainsi, pour la longueur du pendule à secondes, à 
Paris,

/ =  993mm,856463.

26. Origine du jour sidéral. — 11 existe sur l ’équateur un 
point remarquable que nous définirons plus tard, et que l’on 
nomme point vemal. Les astronomes sont convenus de fixer 
l’origine du jour sidéral, en chaque lieu, à l’instant où le point 
vernal passe au méridien supérieur de ce lieu.

27. P endule sidérale. — Lorsque la longueur du pendule à 
secondes est déterminée, on construit une horloge dont le 
cadran est divisé en 24 parties égales, et dont la petite aiguille 
accomplit sa révolution en un jour : c’est la pendule sidérale. 
On la règle de manière qu’elle marque 0h 0m 0* au moment où 
le point vernal passe au méridien supérieur. C’est celte hor­
loge que nous associerons désormais à la lunette méridienne, 
dans nos observations des passages.

2 8 . Cercle horaire, angle horaire d’une étoile. — Si l’on



mène un plan par l'axe PP' (fig. 8) et par une étoile A, ce plan 
détermine sur la sphère un méridien céleste PAP', qu’on ap­
pelle cercle horaire de l’astre. Ce cercle, dans le mouvement 
diurne, tourne autour de l’axe, sans cesser de contenir l’é­
toile en mouvement ; lorsqu’il vient à contenir le zénith, il se 
confond avec le méridien du lieu (n° 16).

L’angle horaire de Î’étoile-A est l’angle dièdre que forme le 
plan de son cercle horaire avec le méridien supérieur; si PE, 
est la partie supérieure du 
méridien dulieu, l’angle ho­
raire de l’étoile A est mesuré 
par l’arc équatorial E,D. 11 
croit de 0° à 360° dans le 
sens du mouvement diurne 
(sens contraire à celui qu’in­
dique la flèche de la figure).

E n  u n  j o u r  s idéra l,  l ’a n ­
gle h o ra i re  varie  d e  360° ;
commele mouvement diurne 
est uniforme, la variation est de 13° par heure sidérale, et 
par conséquent de 13° X  t pour t heures sidérales.

Comme le point vernal passe au méridien supérieur à 
0h 0“ 0S (n° 26), il en résulte que, lorsque la pendule sidérale 
marque t heures, l’angle horaire du point vernal est 13° x  t.

29. Conversion du temps en degrés. — Dans l’expression 
15° X  t, t représente le temps évalué en heures et en fraction 
ordinaire d’heure; ainsi s’il s’agit, par exemple, de 3h23“ 36% 

2d 36
1 — 3 +  gQ +  Mais, au lieu de multiplier 15° par ce

nombre fractionnaire, on peut faire la conversion du temps en 
degrés par un calcul plus simple. Car l h correspondant à 15°, 

13° 15'
l m correspondra à —  ouà 15', Is à —  ouà 13". Donc3h23m36’ 

60 60
correspondront à 3 fois 15° -f- 25 fois 15' - f  36 fois 15". Il suf­
fira donc de multiplier les heures données et leurs subdivi­
sions par 15; les heures donneront les degrés, les minutes 
donneront les minutes, etles secondes donneront les secondes.
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On dira :
3h donnent 15° X  3 — -55°

25“ donnent 15' X  25= 375’ =  6« 15
36’ donnent 15" X  36 =  540" =  9'

donc 3h 25m 36’ donnent 51° 24'

On peut encore opérer d’une autre manière. En effet, puis­
qu’une heure correspond à 15°, une minute correspondra

15"à —— ou à un quart de degré, et, de même une seconde cor- 60
respondra à un quart de minute. On dira donc :

3h donnent 15° X  3 =  45°
25°2om donnent —  — C° 15'4
O

3 6 J d o n n e n t  -L-— ^  9

Total =  51° 24'

CHAPITRE III.

MOUVEMENT RÉEL DE ROTATION DE LA TERRE ÇUR ELLE-MÊME.

50. La spdère céleste tourne-t- elle réellement? — Nous 
avons admis jusqu’ici, d’après le témoignage de nos yeux, que 
les étoiles tournent autour de nous d’un mouvement circu­
laire et uniforme ; et nous ne nous sommes pas préoccupés 
des difficultés mécaniques que pourrait présenter une telle 
rotation. Il convient maintenant d’examiner la question à ce 
point de vue, et de chercher si les mêmes apparences ne 
pourraient pas être produites à nos yeux par un autre mou­
vement plus simple et plus admissible,

5 i . Illusions produites par le mouvementde l’observateur. — 
Remarquons d’abord que la vue peut avertir un observateur



de la variation de la distance à laquelle il se trouve d’un ob­
jet, du changement de sa direction avec le temps ; mais elle 
ne peut lui apprendre à qui, de l’objet ou de lui-même, il doit 
attribuer le mouvement. Si donc, à tort ou à raison, il se croit 
immobile, il croira nécessairement au déplacement de l’ob­
jet. D’autre part, lorsque nous faisons partie d’un système en 
mouvement avec tout ce qui nous entoure, et que d’ailleurs ce 
mouvement s’opère librement et sans secousse, le sens du 
toucher reste muet pour nous ; car les objets voisins nous pa­
raissent en repos. Si donc, dans ce cas, la vue nous avertit 
d ’un mouvement quelconque, nous ne pouvons que l’attri­
buer aux objets qui ne participent pas à celui qui nous en­
traîne. C’est ainsi qu’en ballon, lorsqu’il a perdu de vue la 
terre, le voyageur se croit complètement immobile, et les va­
riations de la colonne barométrique l’avertissent seules qu’il 
monte ou qu’il descend.

52. D eux hypothèses sur le mouvement diurne. — Cela posé, 
les faits qui ont été  étudiés dans le chapitre précédent peuvent 
s’expliquer de deux manières différentes et opposées. Ou, 
comme nous l’avons admis, l’observateur est immobile sur la 
terre, et les étoiles décrivent autour de l’axe, d’orient en 
occident, des cercles parallèles, de rayons différents, en 
24 heures sidérales, avec une vitesse angulaire constante : 
cette hypothèse a pour elle le témoignage de nos sens. Ou la 
sphère céleste est immobile, et l’observateur, ou plutôt la terre 
qui le porte, tourne autour du même axe, dans le même temps, 
avec la même vitesse angulaire, mais en sens contraire, c’est- 
à-dire d’occident en orient. Cette seconde hypothèse, qui ré­
pugne, au premier abord, à nos croyances instinctives, rend 
compte, avec la même rigueur que la première, de tous les 
mouvements observés ; au lieu de voir passer devant lui toutes 
les étoiles, à mesure qu’elles traversent -le méridien immo­
bile, c’est l’observateur qui va, pour ainsi dire, à la rencontre 
des étoiles fixes; c’est son méridien qui, en tournant, par­
court successivement toutes les régions du ciel. Puisque, d’a­
près ce qui a été dit (n° 31), le témoignage de nos sens ne peut 
être un obstacle au mouvement de la terre, examinons la­
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quelle des deux hypothèses est le plus en harmonie avec les 
lois de la mécanique, avec les inductions de la logique.

55. Discussion des deux hypothèses. — 1° La terre, dont nous 
apprendrons plus tard à mesurer les dimensions, a environ 
40000 kilomètres de circonférence. Si elle tourne autour d’un 
axe, un point de son équateur parcourt 40000 kilomètres en 
24 heures ; il a donc une vitesse de 28 kilomètres environ par 
minute. Si ce sont, au contraire, les étoiles qui tournent, 
comme leur distance à la terre vaut, ainsi qu’on le verra, plus 
de 200000 fois 150 millions de kilomètres, une étoile équato­
riale doit décrire en 24 heures une circonférence de ce rayon, 
et avoir, par conséquent, une vitesse de plus de 2 millions de 
kilomètres ou 500000 lieues de poste par seconde. Quelle pré­
somption en faveur du mouvement de la terre !

2° La terre est un corps solide dont les molécules adhèrent 
les unes aux autres ; et les eaux et les gaz qui existent à sa 
surface y sont maintenus parla loi de la pesanteur. On com­
prend donc que cette masse puisse tourner autour d’un axe, 
d’un mouvement commun à toutes ses parties. Mais la sphère 
céleste n’est qu’une fiction ; les distances des étoiles à la terre 
sont fort différentes ; aucune force sensible ne les retient dans 
leurs positions relatives ; il faut donc, si elles tournent, que 
leurs vitesses soient rigoureusement proportionnelles aux 
circonférences qu’elles décrivent, ou à leurs distances à l’axe 
de rotation, puisque leurs révolutions s’accomplissent dans le 
même temps. Il faut que la même loi existe pour tous les as­
tres visibles, et même pour ceux, en bien plus grand nombre, 
qu’on ne découvre que dans les télescopes. Quelle complica­
tion d’un côté, quelle simplicité de l’autre !

3° Ce n’est pas tout : le soleil, 1« lune, tout en participant 
au mouvement diurne, ont un mouvement propre plus lent, 
dirigé en sens contraire ; les planètes, les comètes, nous le 
démontrerons,- tournent autour du soleil ; les satellites tour­
nent autour de leur planète. Tous ces mouvements se com­
prennent et s’expliquent facilement dans l’hypothèse de l’im­
mobilité du ciel ; mais, s’il faut les combiner avec le mou­
vement journalier des étoiles, on ne peut y parvenir qu’en
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inveniant, avec Ptolémée, pour chacun de ces corps, une 
sphère particulière, plus petite, concentrique à la sphère cé­
leste, et qui tournerait, sous son impulsion, avec une vitesse 
différente.

On voit que, dans le système fourni par les apparences, Its 
difficultés surgissent de tous côtés. Mais on peut donner du 
mouvement de la terre des preuves d’une autre nature. 
L’augmentation de la pesanteur à la surface du globe, à me­
sure que l’on s’approche des pôles terrestres, augmentation 
due en partie à la diminution de la force centrifuge (1) ; l’im­
possibilité mécanique absolue du mouvement rotatoire de 
corps énormes autour d’un corps relativement très-petit ; les 
expériences constatant qu’un corps qui tombe librement sur 
la terre dévie toujours à l’est de la verticale, et enfin les ré­
cents travaux de M. Foucault sur les oscillations du pendule, 
sont des preuves que nous ne pouvons développer ici, mais 
qui rendent incontestable l’hypothèse de l’immobilité des 
étoiles fix e s .

5 4 . Mouvement réel de la terre sur elle-même. —  Nous 
conclurons de celte discussion, avec Copernic, que :

La terre tourne sur elle-même, en 24 heures sidérales, d’occi­
dent en orient, avec une vitesse constante, autour d'un axe incliné 
à l’horizon de Paris de 48° 50' 11".

Mais nous n’en continuerons pas moins à employer, dans 
nos explications ultérieures, l ’hypothèse du mouvement des 
étoiles, lorsqu’elle nous paraîtra devoir simplifier ou faciliter 
l’intelligence de nos démonstrations. Il n’est pas nécessaire 
de dire que ce langage n’offrira pas d’inconvénients réels, 
puisque, d’une part, il sera toujours possible de lui substi­
tuer un langage conforme à la vérité, et que, de l ’autre, aux 
deux points de vue, les apparences seront toujours les mômes.

(1) Voir la note II, A la fin du volume.
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CHAPITRE IV.

DESCRIPTION DU CIEL.

Différence des étoiles en ascension droite. — Déclinaisons. — Constellations 
et principales étoiles. — Étoiles de diverses grandeurs : combien on en 
voit à l'œil nu. — Étoiles périodiques, temporaires, colorées. — Étoiles 
doubles, leurs révolutions. — Distance des étoiles à la  terre. — Voie 
lactée. — Nébuleuses, nébuleuses résolubles.

g I. — COOitDONNÉES DES ÉTOILES.

55. N o u v e a u  s y s t è m e  d e  c o o r d o n n é e s . — Pour fixer la posi­
tion d’une étoile sur la sphère céleste, les lois du mouvement 
diurne nous fournissent un système des coordonnées sphéri­
ques bien préférable au système des hauteurs et des azimuts 
(n° 9) : c’est celui des ascensions droites et des déclinaisons ; 
nous allons le définir.

56. A s c e n s i o n  d r o i t e . — L’ascension droite A d’un astre
A (fig. 8), est l’angle de 
son cercle horaire PAF 
avec un cercle horaire arbi­
traire. Ce dernier coupe l’é­
quateur en un point T  qu’on 
nomme Vorigine des ascen­
sions droites. Ou marque 0° 
en ce point, et l’on compte 
l’ascension droite de l’ouest 
vers l’est, sur l’équateur, 
dans le sens indiqué par

la flèche, depuis 0° jusqu’à 360°.
Soit PEg le méridien supérieur du lieu. On a évidemment :

arc T  D -f- arc DE? =  arc T  E„ ;

ou, en d’autres termes, l'ascension droite de l'astre, augmentée 
de l’angle horaire de l'astre, est égale à l’angle horaire de

Fig. 8.



point T  (en négligeant les multiples de 360°). C’est ce qu’on 
écrit ainsi :

A* +  H*= H r  =  15° X  é,
t étant l’heure sidérale (n° 28). Au moment où l’astre passe au 
méridien supérieur, son angle horaire est nul ; donc, à cet 
instant, son ascension droite est égale à l'angle horaire du point 
T  ; on a

tAv  =  H r  =  l o ° X < .

Le point T  est le point vernal dont la définition sera don­
née ultérieurement. Comme nous ne le connaissons pas en­
core, nous choisirons provisoirement une étoile remarquable, 
Rigel, par exemple, et nous prendrons le point G, où son cer­
cle horaire PRP' coupe l’équateur, comme origine des ascen­
sions droites. Nous dirons alors que l’arc GD est l’ascension 
droite de l’étoile A par rapport d Rigel, ou, suivant l’expres­
sion reçue, la différence des deux astres en ascension droite ; car 
GD est la d ifférence e n t r e  T D e t T G .

37. Déclinaison. — La déclinaison B d’un astre A est l’angle 
que le rayon visuel mené à l’astre fait avec le plan de l’équa­
teur (fig. 8). Elle est mesurée par l’arc AD compris, sur le cer­
cle horaire, entre l’astre et l ’équateur, et elle se compte de 
l’équateur au pôle, depuis 0° jusqu’à 90°. Elle est boréale ou 
australe, suivant que l’astre est dans l’hémisphère boréal ou 
dans l’hémisphère austral. Pour distinguer une déclinaison 
australe d’une déclinaison boréale, on regarde la première 
comme négative et la seconde comme positive. La déclinai­
son d’un astre est le complément de sa distance polaire.

38. Position d’une étoile au moyen de ses deux coordonnées. 
— La position d’une étoile A est parfaitement déterminée sur 
la sphère, quand on connaît son ascension droite A et sa dé­
clinaison B. Car il suffit, pour l’y placer, de porter sur l’é­
quateur, dans le sens de la llèche, et à partir du point origine 
T , un arc T  D égal à A, de construire le demi-cercle ho­
raire PDP', et de porter sur ce cercle, dans le sens convena­
ble, un arc DA égal à (B : le point A est le lieu de l’étoile.

Le grand avantage de ce système de coordonnées, c’est qu’il
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ne dépend ni de la position de l’observateur sur la terre, ni 
du moment de l’observation ; en quelque lieu et à quelque 
moment que l’on détermine l’ascension droite et la déclinai­
son d’une étoile, on trouve les mêmes valeurs. Expliquons 
maintenant comment on peut les mesurer.

5 9 . M e s u r e  d e  l ’a s c e n s i o n  d r o i t e  d ’u n e  é t o i l e .  — On a vu 
(n° 36) que l’ascension droite d’une étoile, au moment où elle 
passe au méridien, est égale à l’angle horaire du point T , 
origine des ascensions droites. Or, on a démontré (n° 28) que, 
si la pendule sidérale est réglée sur le passage du point T  au 
méridien supérieur, l’angle horaire de ce point est mesuré à 
chaque instant par l’heure sidérale t, et est, par suite, égal 
à 15° X  t. Si donc le point T  est connu, l'ascension droite de 
chaque étoile est mesurée par l'heure sidérale de son passage au 
méridien. S’il n’est pas encore déterminé, on règle la pendule 
sidérale sur le passage de Rigel, et l'heure sidérale du passage 
de l’étoile est encore la mesure de son ascension droite par rapport 
à Rigel.

Ainsi, dans tous les cas, pour obtenir l’ascension droite 
d’une étoile, il suffit d’observer son passage supérieur, à la 
lunette méridienne, de noter l ’heure sidérale du passage, et

de convertir ce temps en 
degrés, minutes et secon­
des, à raison de 15° par 
heure (n° 29).

On se rend compte im­
médiatement de cette 
méthode, en imaginant 
que la sphère céleste a 
été partagée en 24 par­
ties égales par i2  cer­
cles horaires PAP', PBP', 
PCP'... (fig. 9), et que 
l’un d’eux, PAP1, con. 

tient l’origine A des ascensions droites; car alors on com­
prend que chacun d’eux vient à son tour, à une heure d’in­
tervalle, se confondre avec le méridien; de telle sorte que
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l ’étoile qui passe au méridien, une heure, deux heures,... 
t  heures après l’origine A, a pour ascension droite 15°, 30°,...
15° X  t.

40. Mesure de la déclinaison d’un astre. —  La déclinaison 
d’un astre est égale à la somme ou à la différence de la hauteur 
du pôle et de la distance zénithale méridienne de l'astre. En cü'et, 
soient (fig. 10) SZN le méri­
dien de l’observateur, PP'l’axe 
et TZ la verticale, NS et EE' 
les traces de l’horizon et de 
l’équateur sur le méridien.
L’étoile peut passer au méri­
dien en A entre le pôle et le 
zénith (passage supérieur), ou 
en B entre le zénith et l’équa­
teur, ou en G entre l’équatc îr 
et l’horizon.

Dans le premier cas, la dé­
clinaison est AE, et l’on a AE =  ZE -f- ZA. Or ZE =  PN
comme ayant pour complément le même arc ZP; donc ZE 
est la hauteur du pôle ; je la désigne par P. D’ailleurs ZA est

Fig. 10.

la distance zénithale méridienne de l’astre, ou Z; donc, en 
désignant par 65 la déclinaison, on a dans ce cas

© =  P +  Z. (l)

Dans le deuxième cas, la déclinaison BE =  ZE — ZB, c’est-à- 
dire

<35 =  p — z. (2)

Dans le troisième cas, la déclinaison CE est australe, et on a 
CE =  CZ — ZE, c’est-à-dire

<35 =  Z — P. (3)
C’est ce qu’il fallait démontrer.
On voit donc que, la hauteur P étant déterminée, une lois 

pour toutes, pour le lieu d’observation, il suffit, pour mesurer 
la déclinaison d’un astre, d’observer, au cercle mural, sa dis­
tance zénithale Z lors de son passage supérieur au méridien. 11



sera d’ailleurs facile de reconnaître celle des trois formules 
qu’on devra appliquer/Carsi, pour voirie passage, on se tourne 
vers le nord, on choisira la première. Si l’on se tourne vers le 
sud, ce sera la deuxième ou la troisième qu’il faudra prendre; 
on prendra la deuxième, si Z est plus petit que P, et la troi­
sième dans le cas contraire. Dans ce dernier cas seulement, 
la déclinaison est australe.

Piemarquons encore que les trois formules peuvent se ré­
duire à une seule,

o  =  p +  z,

si l’on adopte, d’une part, la convention ordinaire des signes 
pour la déclinaison (n° 37), et si, de l’autre, on regarde la 
distance Z comme positive, quand elle est comptée vers le 
nord, et comme négative, quand elle est comptée vers le sud.

4  i . Catalogues, globes et cartes célestes. — La description 
du ciel consiste aujourd’hui à inscrire dans des catalogues les 
valeurs des deux coordonnées (ascension droite et déclinaison) 
de chaque étoile. Une première colonne verticale contient le 
nom-de chaque étoile ; une deuxième, l’heure de son passage 
au méridien, réglée sur le passage du point vernal; une troi­
sième contic. t son ascension droite, en degrés, minutes et 
secondes; une quatrième, sa déclinaison avec son signe. Les 
plus célèbres de ces catalogues sont ceux d’Hipparque, de 
Flamsteed et de Lalande. Mais la lecture de ces catalogues ne 
peut guère nous apprendre à connaître l’état de la voûte cé­
leste. On devra donc employer comme auxiliaires les globes et 
les cartes, d’après lesquels on pourra se rendre compte des 
positions relatives des étoiles.

Pour construire un globe céleste, on trace sur une sphère 
de bois ou de carton un grand cercle destiné à représenter 
l’équateur : les pôles de ce cercle sont les pôles du monde. On 
prend sur l’équateur un point qui sera l’origine des ascen­
sions droites. On trace un grand cercle passant par ce point 
et par les pôles; ce sera le cercle horaire origine. Puis, par­
tageant l’équateur en 24 parties égales, par exemple, à partir 
de l’origine, on trace, par les points de division, les cercles
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horaires qui correspondent aux différentes heures sidérales.
On divise aussi l’un de ces cercles horaires en parties égales, 
àparlir de l’équateur; et, des pôlescomme pôles géométriques, 
on trace, par les points de division, les petits cercles qui repré­
senteront les parallèles célestes. Chaque étoile se place alors 
à l'intersection du demi-cercle horaire que détermine son as­
cension droite et du parallèle, boréal ou austral, que donne sa 
déclinaison, positive ou négative. Si ces deux cercles ne font 
pas partie du réseau déjà tracé, on les construit, ou bien on 
place l’astre approximativement dans le trapèze que forment 
les cercles voisins.

Quant aux cartes célestes, nous donnerons les principes de 
leur construction en traitant la question des cartes géographi­
ques (liv. II, ch. ni). Nous dirons seulement ici, que la mappe­
monde céleste (fig. 14, pl. l re) a été construite dans le système 
stéréographique, en prenant l’équateur pour plan de projec­
tion, et que la carte des constellations équatoriales (Og. 14 bis, 
pl. 2) a été construite à l’aide des projections cylindriques. 
(Voir ces cartes à la fin du volume.) On d is tingue ,  parmi les 
mappemondes, celle de.5&!/er(1603), l’atlasde Flamsteed(1729), 
et surtout les 24 cartes de l’Académie de Berlin, qui contien­
nent les observations de Bessel.

42. Tableau des ascensions droites et des déclinaisons des 
étoiles fondamentales. — Nous avons déjà dit (n° 5) que les 
étoiles ne sont pas rigoureusement immobiles sur la sphère 
céleste en mouvement ; mais nous avons ajouté que leurs 
mouvements propres sont très-faibles. 11 résulte de là que les 
ascensions droites et les déclinaisons des étoiles doivent varier 
lentement avec le temps. M. Le Verrier, dans un beau travail 
inséré dans les Annales de l'Observatoire, a discuté une série 
d’observalions faites, de 1840 à 1850, à l ’Observatoire de Green­
wich, et il en a conclu les positions moyennes et les mouvements 
propres annuels des trente-six étoiles dites fondamentales pour 
l’année 1845. Le résultat de ce travail est consigné dans le ta­
bleau suivant; les ascensions droites y sont données en temps 
sidéral, l’origine du jour étant le moment du passage supé­
rieur du point vernal au méridien.
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N
U

M
ÉR

O
S. NOMS

DES ÉTOILES.

ASCENSION 
dro ite  

b *  1 8 4 5 .

U0CTEEE.M
PROPRB

en
ascension droite

DÉCLINAISON 

moyenne  
e n  1 8 4 5 .

MOUVEUtST
PROPRB

en
déclinaison.

I Pégase y _____ _

h m s

0 .  5 . 1 5 , 5 7 7

s

+ 0 , 0 0 0 6 5

o • //

+ 1 4 . 1 9 . 1 7 , 7

V

- 0 , 0 1 4 0
2 Bélier a .................. 1 . 5 8 . 2 6 , 8 3 9 + 0 , 0 1 4 4 0 + 2 2 . 4 3 . 3 5 , 3 — 0 , 1 4 5 9
3 Baleine a ............... 2 . 5 4 . 1 0 , 9 1 4 — 0 ,0 0 1 3 1 +  3 . 2 8 . 4 0 , 3 — '1,1664
4 Aldébaran........ 4 . 2 7 .  1 ,9 4 4 + 0 , 0 0 5 5 0 + 1 6 . 1 1 . 3 1 , 8 — 0 , 1 7 3 9
6 L a  Chèvre........ 5 .  5 . 1 4 , 8 7 0 + 0 , 0 0 9 8 5 +  1 5 . 4 9 . 6 8 , 8 — 0 , 4 2 5 0
(5 lîigel................. 5 .  7 .  5 , 4 3 9 + 0 . 0 0 0 3 0 —  8 . 7 3 .  7 ,7 —  0 , 0 1 2 0
7 Taureau g  ____ 5 . 1 6 . 2 9 , 8 3 8 + 0 , 0 0 2 8 0 + 2 8 . 2 8 . 1 2 , 4 — 0,1 9 5 1
8 Orion a ............. 5 . 4 G . 4 G . 8 8 0 - r O , 0 0 2 2 0 +  7 . 2 2 . 2 1 , 5 + 0 , 0 0 2 2
9 Sirius............... 6 . 3 8 . 1 9 , 1 0 5 — 0 , 0 3 4 4 0 —  1 6 . 3 0 . 2 7 , 0 —  1 ,3 9 8 0

10 Castor............... 7 . 2 4 . 4 1 , 8 2 6 — 0 , 0 1 3 8 7 + 3 2 . 1 3 . 1 9 , 2 — 0 , 0 7 7 7
11 Procvon............ 7 . 3 1 .  1 1 ,0 8 0 — 0 , 0 4 5 6 3 +  5 . 3 7 .  4 , 5 —  1 ,0 2 3 5
12 Pollùx............... 7 . 3 5 . 4 9 , 3 9 3 - 0 , 0 1 6 5 2 + 2 8 . 2 3 . 4 2 , 2 — 0 , 0 5 7 0
13 Hydre a ................. 9 . 1 9 . 5 8 , 1 6 8 — 0 , 0 0 1 0 0 —  7 . 5 9 . 2 3 , 5 + 0 , 0 3 0 1
H Régulus.................. 1 0 .  0 .  6 , 6 8 2 — 0 , 0 1 6 5 5 +  1 2 . 4 3 . 2 0 , 1 + 0 , 0 0 6 1
15 Lion g ...................... 1 1 . 4 1 .  8 , 9 5 2 — 0 , 0 3 3 8 6 +  1 5 . 2 6 . 1 8 , 0 - 0 , 1 0 3 6
IG Vierge S.................. 11 . 4 2 . 3 7 , 2 7 3 + 0 , 0 4 9 1 9 +  2 . 3 8 . 1 5 , 8 - 0 , 2 9 7 5
17 L’Epi................. 1 3 . 1 7 .  2 , 0 3 2 — 0 , 0 0 2 9 4 —  1 0 . 2 1 .  1 ,3 — 0 , 0 4 0 3
18 Arcturus............... l i .  8 . 3 5 , 5 8 3 — 0 , 0 7 8 1 2 + 1 9 . 5 9 . 3 0 , 7  

—  1 5 . 2 0 . 6 0 , 0
— 0 , 9 8 3 0  
- 0 , 0 6 9 0!9 Balance a 1........... 1 4 . 4 2 .  7 ,3 6 1 — 0 , 0 0 7 7 3

2 0 Balance a 2 ........... 1 4 . 4 2 . 1 8 , 7 6 3 — 0 , 0 0 7 7 9 —  1 5 . 2 3 . 3 7 , 7 —  0 ,0 5 7 4
21 Couronne a . .  . . 1 5 . 2 8 .  7 , 5 8 9 + 0 , 0 0 9 5 8 + 2 7 . 1 4 . 2 3 , 0 — 0 ,0 7 8 1
22 Serpent a .............. 1 5 , 3 6 . 3 8 , 1 7 5 + 0 , 0 0 8 8 3 +  6 . 5 5 .  2 ,7 + 0 , 0 5 4 1
2 3 Antarès................... 1 6 . 1 9 . 5 4 . 7 2 8 — 0 , 0 0 0 5 9 — 2 6 .  4 . 5 6 , 4 — 0 , 0 3 3 6
24 Hercule a .............. 1 7 .  7 . 3 4 , 8 8 5 - 0 , 0 0 0 4 2 + 1 4 . 3 4 . 1 7 , 8 + 0 , 0 4 1 1
25 Ophiueus a .......... 1 7 . 2 7 . 4 4 , 4 7 7 + 0 , 0 0 7 5 9 4 - 1 2 . 4 0 . 3 8 , 8 — 0 , 2 1 3 1
2 G Wéga........................ 1 8 . 3 1 . 4 1 , 4 3 9 4  0 , 0 i 8 7 0 + 3 8 .  3 8 . 3 3 ,8 + 0 , 2 8 2 1
27 Aigle y ..................... 1 9 . 3 8 . 5 3 , 4 0 0 + 0 , 0 0 1 ( 9 3 + 1 0 . 1 4 . 2 3 , 4 + 0 , 0 0 3 1
28 Aigle a .................... 1 9 . 4 3 . 1 3 , 1 8 8 + 0 , 0 3 6 6 3 +  8 . 2 7 . 4 8 , 1 , + 0 , 3 8 0 0
2 9 Aigle g ..................... 1 9 . 4 7 . 4 1 , 9 1 6 + 0 , 0 0 2 3 4 +  G. 1 . 2 5 , 9 — 0 , 4 7 7 0
3 0 Capricorne a 1 . . 2 0 .  9 .  3 , 1 0 8 + 0 , 0 0 0 1 0 — 1 2 . 5 8 . 5 7 , 6 + 0 , 0 0 1 0
31 Capricorne a2. . 2 0 .  9 . 2 6 , 9 9 5 + 0 , 0 0 3 3 0 — 1 3 .  1 . 1 4 , 5 + 0 , 0 0 2 8
32 Cygne a .................. 2 0 . 3 6 .  8 , 9 2 8 + 0 , 0 0 0 8 7 + 1 4 . 4 3 . 4 4 , 5 + 0 , 0 0 2 4
33 Verseau a . . . . 2 1 . 5 7 . 4 9 , 2 3 4 + 0 , 0 0 0 5 6 —  1 .  4 . 1 3 , 0 — 0 , 0 0 5 5
34 Fomalhaut........... 2 2 . 4 9 .  4 , 3 1 8 + 0 , 0 2 4 8 3 — 3 0 . 2 6 . 3 1 , 6 — 0 , 1 6 6 2
35 Pégase a ............... 2 2 . 5 7 .  2 , 6 0 8 + 0 , 0 0 4 6 5 + 1 4 . 2 2 . 2 0 , 2 — 0 , 0 2 2 1
3G Andromède a ... 0 .  0 . 2 3 , 1 6 5 + 0 , 0 1 0 4 9 + 2 8 . 1 4 .  3 ,8 — 0 , 1 5 3 3

§ II- —  ÉT ID E  DES CONSTELLATIONS.

43. Constellations ou astérismes. — Lorsqu’on veut se fa­
miliariser avec l’aspect du ciel, il faut recourir au procédé 
des anciens, au système des constellations. Les étoiles sont dis­
séminées à profusion sur la voûte céleste, mais elles y parais­
sent fort inégalement distribuées. On en voit beaucoup dans 
certaines régions, et fort peu dans d’autres; les unes sont très- 
brillantes, d’autres sont à peine visibles ; leur couleur varie 
comme leur éclat ; leurs positions relatives forment les figures
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les plus variées. Ou comprend donc comment il a été possible 
aux anciens de réunir en groupe un certain nombre d’étoiles 
voisines autour des plus brillantes, de former de chaque 
groupe une constellation facile à distingue»' des autres, et de 
lui donner le nom de l’homme, de l’animal, ou de l’objet dont 
leur imagination croyait y reconnaître la figure. Puis, dans 
chaque groupe, ils ont pu désigner chaque étoile par un nom 
spécial, dû à la position qu’elle y occupe, ou simplement par 
une lettre de l’alphabet grec, en nommant d’abord les plus 
belles. Tout le travail se réduit donc, pour l’observateur, à 
reconnaître les diverses constellations. Il y parvient sans peine, 
en commençant par celles qui avoisinent le pôle nord; il les 
étudie sur une carte, et il les trouve facilement dans le ciel; 
puis, de proche en proche, et à l’aide d'alignements qu’il trace 
sur la carte, il peut rattacher à celles-là les constellations plus 
éloignées; et, retrouvant ces alignements sur la voûte céleste, 
il peut arriver ainsi à connaître complètement toute la partie 
visible. Comme il y a des astres trop voisins du pôle sud pour 
pouvoir s’élever au-dessus de l’horizon de Paris, il faut, pour 
les connaître, aller dans l’hémisphère austral de la Terre.

44. Description de quelques constellations. — Les astro­
nomes comptent ordinairement cent dix-sept constellations. 
Nous allons, en décrivant les principales parmi celles qui sont 
visibles dans nos climats, donner au lecteur les alignements 
qui lui permettront de les retrouver dans le ciel. Nous l’enga­
geons à suivre dans cette recherche l’ordre que nous indi­
quons.

•1° La Grande-Ourse ou le Chariot. Lorsque l’observateur 
est tourné vers le nord, il reconnaît celte belle constellation, 
composée principalement de sept étoiles secondaires, dont 
quatre forment un trapèze a, 6, y, S (le corps de l ’Ourse ou les 
quatre rowesdu Chariot), et dont les trois autres e, Ç, vj, forment 
un arc convexo vers le pôle (la queue de l’Ourse ou le timon).

2» La Petite-Ourse. En prolongeant la ligne <*6 des gardes 
de la Grande-Ourse d’une longueur égale à 5 fois sa valeur, 
on trouve une étoile qui brille seule dans cette région du ciel ; 
c’est la Polaire. Elle est la dernière de la queue de la Petile-

COSM. G. 3
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Ourse, constellation formée, comme la précédente, de sept 
étoiles affectant la môme figure, mais plus resserrée, de 
moindre éclat, et placée en sens inverse. On ne voit bien que 
les gardes ê, y, et la Polaire a. On a déjà dit que la Polaire 
n’est qu’à 1° 28' du pôle boréal.

3° Le Dragon. Longue file sinueuse d’étoiles peu brillantes, 
qui sépare les deux Ourses, puis enveloppe en partie la petite, 
s’en éloigne ensuite par une courbure contraire, et va se ter­
miner, non loin de la Lyre, par un trapèze fort visible qui est 
la tête du Dragon.

4° Céphée. La ligne des gardes de la Grande-Ourse, prolon­
gée au delà de la Polaire, tombe sur y de Céphée, constellation 
formée de trois étoiles en arc légèrement convexe vers le pôle.

5° Cassiopée est formée de cinq étoiles fort visibles, qui 
représentent un Y dont la queue est brisée à l’étoile 8. Elle 
est de l’autre côté du pôle par rapport à la Grande-Ourse, et à 
peu près à la môme distance; elle est voisine de Céphée.

6° Pégase. Grand carré formé de quatre belles étoiles secon­
daires. La ligne des gardes de la Grande-Ourse, prolongée au 
delà de la Polaire et de Cassiopée, traverse cette constellation.

7° Andromède. L’une des étoiles a du carré de Pégase est la 
première d’Andromède, constellation qui contient, en outre, 
deux autres étoiles aussi belles, 6, y, presque en ligne droite 
avec a; ces trois étoiles sont équidistantes, et dirigées suivant 
la diagonale prolongée de Pégase.

8° Persée. En prolongeant la ligne d’Andromède, on ren­
contre la luisante a de Persée; elle est comprise entre deux 
autres plus petites, y et S, qui forment un arc concave vers la 
Grande-Ourse, et presque à angle droit sur Andromède.

9° Les Pléiades. Une série de petites étoiles en ligne droite, 
partant de 8 de Persée, se porte au midi sur un groupe de six 
ou sept étoiles très-serrées, et parfaitement reconnaissables : 
ce sont les Pléiades.

40° Le Cocher est un grand pentagone irrégulier, situé à 
l’orient de Persée; il contient la Chèvre (a du Cocher), très- 
belle étoile jaune de première grandeur. La Chèvre est sur le 
prolongement de l’arc 8 a y de Persée.



11° Les Gémeaux sont à l’orient du Cocher, et un peu plus 
loin du pôle. Cette constellation forme un rectangle long, 
dont l’un des petits côtés a pour sommets Castor ou a à l’oc­
cident, et Pollux ou ë à l’orient, et est le prolongement de 
l’arc de Persée et de la Chèvre, avec une courbure en sens 
inverse.

12° Orion est la plus belle des constellations par son éten­
due et par son éclat ; c’est un grand quadrilatère a ë y x, dont 
les deux sommets a et ë sont deux primaires, l’épaule droite ou 
Béteigeuze, et le pied gauche ou Bigel, et les deux autres y et x 
sont deux secondaires. Au centre, sont trois secondaires, ser­
rées, en ligne droite oblique, formant le Baudrier ouïes Trois 
Rois ; l’une d’elles, S, est à peu près dans l’équateur. La ligne 
qui va de la Polaire au Cocher traverse plus bas Orion.

13° Le Taureau. En prolongeant la ligne des Rois vers le 
nord-ouest, on rencontre une étoile rougeâtre de première 
grandeur : c’est Aldébaran ou Y œil du Taureau; elle termine 
une des branches d ’un  V composé de cinq étoiles très-visibles, 
et qui forme le front du Taureau.

14° Le Grand-Chien. La ligne des Rois, prolongée au sud- 
est, rencontre Sirius, la plus brillante étoile du ciel, et qui 
fait partie de la constellation du Grand-Chien. Cette constel­
lation se compose en outre de cinq étoiles secondaires qui 
s’élèvent peu au-dessus de l’horizon de Paris.

15o Le Petit-Chien. En prolongeant la ligne y a. d’Orion vers 
l’orient, on rencontre encore une primaire, Procyon, seule 
étoile remarquable de cette constellation.

46° Le Lion. La ligne des gardes de la Grande-Ourse, pro­
longée vers ë, c’est-à-dire à l’opposite du pôle, traverse le 
trapèze du Lion, dont la base inférieure contient à ses extré­
mités deux belles étoiles, le cœur a. ou Régulus à l’occident, et 
la queue ë ou Dênébola à l’orient.

C7“ Le Bouvier. L’arc de la queue delà Grande-Ourse, pro­
longé, va rencontrer Arcturus, belle étoile primaire du Bou­
vier; cette constellation forme un pentagone au nord-est 
d’Arcturus.

18° La Vierge. L’arc qui donne Arcturus se prolonge sur
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l’Épi, étoile primaire de cette constellation, qui n’offre d’ail­
leurs rien de remarquable.

19° La Couronne Boréale est à l’orient du Bouvier; elle est 
formée de sept étoiles en demi-cercle, et est très-facile à dis­
tinguer; elle contient une secondaire, appelée la Perle.

20° La Lyre se distingue par une belle primaire Wéga; elle 
est à l’opposé du pôle, par rapport à la Chèvre; elle forme 
avec Arcturus et la Polaire un grand triangle, dans lequel 
elle est le sommet d’un angle droit.

21° Le Cygne, à l’orient de la Lyre, forme une crois dans 
la Voie lactée; cette constellation est opposée au pôle, par 
rapport aux Gémeaux.

22° L’Aigle. La ligne qui, partant du pôle, traverse le Cygne, 
va rencontrer au delà trois étoiles en ligne droite, équidistan­
tes, dont celle du milieu est primaire ; celle-ci est Ataïr ou 
Allaïr de l’Aigle.

Nous remarquerons, en terminant, que les étoiles Aldéba- 
an du Taureau, Régulas du Lion, Antar'es du Scorpion et 
Fomalhaut du Poisson austral, partagent le ciel en quatre par­
ties à peu près égales.

Nous pourrions ajouter ici bien d’autres détails; mais, en 
consultant les cartes, le lecteur pourra se tracer à lui-même 
des alignements qui l’aideront à reconnaître toutes les étoiles 
qu’il verra sur la voûte céleste.

§ III. — P articularités sur les étoiles.

45. Classification des étoiles. — On classe les étoiles par 
ordre d’éclat : les plus brillantes sont dites de première gran­
deur; puis viennent les étoiles de deuxième, de troisième 
grandeur; on ne compte pas moins de seize ordres de gran­
deur. Les six premiers seulement sont visibles à l’œil nu; les 
dix autres comprennent les étoiles télescopiques.

On compte environ 5000 étoiles visibles à l’œil nu; mais il 
y en a 1000 qui ne paraissent jamais sur l’horizon de Paris.

On comprend tout ce que doit avoir d’arbitraire une classi­
fication fondée sur l’éclat qui varie d’une étoile à l’autre par



degrés insensibles. Aussi n’est-on pas parfaitement d’accord 
sur Y ordre qui doit renfermer certaines d’entre elles. On évalue 
à 15 ou 20 le nombre des étoiles de première grandeur, à 60 ou 
70 celui des étoiles de deuxième, à 200, 400, 1100, 3200 envi­
ron, ceux des étoiles de troisième, quatrième, cinquième, 
sixième grandeur. Jusqu’à la neuvième inclusivement, on en 
a catalogué plus de 200000. Leur nombre total dépasse cer­
tainement 40 millions. Nous citerons seulement parmi les 
étoiles remarquables, presque toutes primaires, Sirius, Arc­
turus, Rigel, Réteigeuze, la Chèvre, Castor, Pollux, Procyon, 
Aldébaran, Wéga de la Lyre, Y Épi, Ataïr, Règulus et Dénébola, 
que nous connaissons déjà ; puis Antarès, ou le cœur du Scor­
pion, situé sur le prolongement de la ligne qui joint Régulus 
à l’Épi, ou de celle qui va de la pointe du Y du Taureau à la 
Polaire; Fomalhaut, bouche du Poisson austral, située sur la 
ligne ê a de Pégase prolongée vers le sud ; et enfin Canopus 
dans le Navire, a et ë du Centaure, a et ë de la Croix du Sud, et 
A ch ern a r  de l’Éridan, ces six dernières invisibles pour nous.

Des expériences ont été faites pour comparer les intensités 
relatives des diverses étoiles. En appliquant une méthode due 
à Arago, M. Laugier a trouvé des résultats intéressants. Nous 
en citerons quelques-uns :

Sirius.. 1000 Procyon.... 445 Aldébaran... 220
Wéga.. 617 Rigel..........  439 y de l’Aigle. 80
Ataïr... 450 Béteigeuze. 411 ë de l’Aigle.. 34

46. É toiles périodiques. — Certaines étoiles ont un éclat 
variable : on les nomme périodiques ou changeantes. Ainsi o de 
la Baleine est quelquefois secondaire ; son éclat dure quinze 
jours, puis il décroît jusqu’à la dixième grandeur ; l’étoile 
reste alors plusieurs mois invisible; la période de ces alterna­
tives est d’environ 334 jours. Le maximum d’éclat aura lieu 
vers le 19 novembre 1869, puis334jours après, etc. Cette étoile 
est australe, et se trouve sensiblement à l’intersection de la 
droite x ë d’Orion et de la diagonale ë y de Pégase, à peu près 
à la même distance de ces deux constellations.
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L’étoile x du col du Cygne a une période de 404 jours, et 
varie de la cinquième à la onzième grandeur.

Algol ou 6 de Persée ou la Tète de Méduse passe de la 
deuxième à la quatrième grandeur dans une période de 
2 jours 20 heures 48 minutes. Cette étoile est au sud-ouest 
de la luisante, et à peu près à la même distance de Yd’Aw- 
drom'ede.

L’étoile r, d'Argo, qui n’est pas visible sur l’horizon de Pa­
ris, présente des variations très-singulières. Sir J. Ilerschel, 
qui l’observa longtemps au cap de Bonne-Espérance, la plaça 
constamment, de 1834 à 1837, entre la deuxième et la pre­
mière grandeur; le 16 décembre 1837, elle était devenue 
presque subitement égale à * du Centaure; puis elle diminua 
jusqu’en mars 1843, sans cesser d’être de première grandeur. 
En avril 1843, elle devint rapidement presque égale à Sirius, 
et elle a conservé cet éclat extraordinaire jusqu’au commen­
cement de 1850.

On peut citer encore 8 de Céphée, 6 de la Lyre, et une ving­
taine d’autres. On ignore les causes de ces changements. Quel­
ques-uns ont pensé que ces étoiles ont des planètes, invisibles 
pour nous, et qui les éclipsent dans leurs révolutions; d’au­
tres ont supposé qu’elles tournent sur elles-mêmes, et qu’elles 
ne sont pas également brillantes de tous les côtés ; d’autres 
enfin veulent qu’elles aient une forme lenticulaire, dont nous 
apercevons tantôt la tranche et tantôt la face.

47. É toiles variables. — Il y a des étoiles dont la lumière 
croît sensiblement avec la durée des siècles ; telle est 6 de la 
Baleine (au sud-ouest d’o, sur la ligne qui va de celte dernière 
à Fomalhaut).

Arago cite, d’après Flamsteed et Herschel, la lrentc-et- 
unième du Dragon, qui a passé, en cent ans, de la septième 
grandeur à la quatrième ; la trente-huitième de Persée, qui a 
passé de la sixième grandeur à la quatrième.

Il y en a d’autres dont l’éclat diminue. Ainsi a de la Grande- 
Ourse était, au temps de Flamsteed, de première à deuxième 
grandeur; elle est aujourd’hui classée dans la deuxième. Dèné- 
bola, classée par Bayer (1603) dans la première grandeur, est



de la seconde aujourd’hui. De môme, a du Dragon a passé de 
la deuxième à la troisième grandeur.

Il paraît enfin que certaines étoiles ont disparu : telle est la 
cinquante-cinquième d'Hercule, notée par Flamsteed comme 
étant de cinquième grandeur, observée par Herschel en 1781 
et 1782, et qui avait disparu en 1791.

48. Étoiles temporaires. — D’autres étoiles ont paru subi­
tement dans le ciel, ont jeté pendant quelque temps un éclat 
extraordinaire, puis ont disparu sans laisser de traces et sans 
avoir changé de place pendant la durée de leur apparition. On 
peut citer, comme la plus remarquable, celle qui parut, le 
11 novembre 1572, avec un éclat plus vif que celui de Sirius et 
de la planète Jupiter ; visible d’abord en plein midi, quand le 
ciel était pur, elle commença, à diminuer dès le mois de 
décembre ; puis, son éclat s’affaiblissant toujours, on la vit 
passer successivement du blanc au jaunâtre, au jaune rou­
geâtre et au blanc plombé ; elle finit par s’éteindre au mois 
de mars 1574. Elle avait brillé seize mois. Elle a été étudiée 
par Tycho-Brahé.

Une autre étoile primaire parut, le 10 octobre 1604, près de 
6 d’Ophiucus, à l'orient et non loin d'Antar'es. Plus brillante, 
au jour de son apparition, que celle de 1572, au dire de quel­
ques observateurs, elle ne tarda pas à diminuer d’éclat; en 
avril 1605, elle n’était plus que de troisième grandeur ; en 
août, elle était comparable aux étoiles de quatrième grandeur 
A’Ophiucus; en mars 1606, elle avait disparu pour ne plus re­
paraître. Képler nous a laissé le résultat de ses observations 
sur cette apparition.

Ces phénomènes, d’ailleurs, se reproduisent encore denos 
jours; ainsi, dans la nuit du 25 avril 1848, M. Hind aperçut, 
dans le voisinage d ’Ophiucus, une étoile de quatrième ou de 
cinquième grandeur, qui n’était pas visible auparavant, et 
qui, s’alfaiblissant lentement sans changer de place, finit par 
s’éteindre dans le courant môme de l’année.

On peut lire dans 1 ’Astronomie populaire de F. Arago (t. Ier, 
liv. IV, ch. xxxi) les diverses explications qui ont été données
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de ces apparitions, et constater le peu de confiance que leur 
accordait l’illustre astronome.
¢,49. É toiles colorées. — Presque toutes les étoiles sont blan­

ches, comme Sirius. Rigel, etc. ; quelques-unes sont rouges, 
comme Béteigeuze, Aldébaran, Arcturus, Antarès ; d’autres 
sont jaunes, telles sont la Chèvre et Ataïr de Y Aigle. Cette 
coloration est d'ailleurs, en général, assez peu sensible.

4»

§ IV. — D is t a n c e  i m m e n s e  d es  é t o i l e s  a la  i e k r e .

80. I mpossibilité de mesurer cette distance. — Lorsqu’on 
veut mesurer sur la terre la distance d’un point B à un point 
inaccessible (A, fig. H), on trace.surle terrain une iaseBC, à 
'aide de jalons, et on en mesure avec soin la longueur. Puis, 

au moyen d’instruments convenables, dont 
la description ne saurait être donnée ici, on 
évalue les angles ABC, ACB, que font, avec 
la base BC, les deux rayons visuels menés 
des points B et C au point A. On connaît 
alors, dans le triangle ABC, un côté BC et 
les angles ; on peut donc calculer la dis­
tance AB par la trigonométrie. Mais, pour 
que le calcul donne le résultat avec l’ap­

proximation désirable, il faut que le triangle existe, c’est- 
à-dire que le point A ne soit pas assez éloigné pour que 
les deux droites BA et CA soient sensiblement parallèles ; 
on doit donc choisir une base dont la grandeur soit com­
parable à la distance à mesurer. Or, lorsqu'on veut ap­
pliquer cette méthode à la recherche de la distance d’une 
étoile, on trouve que, quelle que soit la base choisie sur la 
terre, fût-ce même son diamètre, qui vaut plus de 12700 kilo­
mètres, les deux droites BA et CA font avec BC des angles 
supplémentaires, et sont par suite parallèles. Il a donc fallu 
chercher une plus grande échelle ; l’astronomie l’a fournie 
dans ’c diamètre de l’orbite que la terre, comme nous le ver­
rons, décrit en un an autour du soleil. Ce diamètre vaut près 
de 300 millions de kilomètres ; et, à six mois d’intervalle, la



terre en occupe les deux extrémités. Or, si, àces deux époques, 
on calcule les angles que les deux rayons visuels BA, CA, 
menés à l’étoile, font avec le diamètre BC de l’orbite (les for­
mules de la trigonométrie sphérique permettent de les dé­
duire des coordonnées de l’astre), on trouve encore que ces 
deux rayons sont parallèles ; ou du moins, si la somme des 
angles à la base diffère de deux angles droits, on reconnaît 
que l’erreur en plus ou en moins est moindre que 0",1, et 
qu’elle est ainsi de l’ordre de petitesse des grandeurs dont on 
ne peut plus répondre dans les mesures.

S I . Mesure de la distance de quelques étoiles. — Le pro­
cédé naturel que nous venons d’indiquer, n’étant pas applica­
ble à la mesure de la distance qui nous sépare des étoiles, il 
semble qu’il nous faut renoncer à la connaître. Cependant 
Bessel, astronome de Kœnigsberg, a pu le premier, par des pro­
cédés tout différents, fondés sur des mesures héliométriques (I), 
parvenir à déterminer l’angle A, pour quelques-unes d’entre 
elles ; et il en a conclu la valeur de la distance correspon­
dante. Comme cet angle est toujours excessivement petit, on 
peut remplacer le calcul trigonométrique par le calcul sui­
vant, qui fournit des résultats parfaitement exacts.

Concevons qu’on ait choisi pour base (fig. 12) celui des dia-
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mètres de l’orbite terrestre qui est perpendiculaire à la dis­
tance de l’étoile au soleil. Soient TT ce diamètre, S et A les 
positions du soleil et de l’astre ; le triangle T AT est isocèle; 
et l’angle A, qui est alors le plus grand possible, est partagé 
par la droite SA en deux parties égales. L’angle SAT sous le­
quel un observateur, placé à l’astre, verrait le rayon ST de 
1 orbite terrestre, se nomme la parallaxe annuelle de l’astre ; 
nous désignerons cet angle par p, l’unité étant la seconde

(1) Voir 1a note 111, à la fin du volume.
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sexagésimale; l’angle A, que l’on mesure, est ainsi le double 
de p. Or, lorsqu’un angle TAT' est très-petit, on peut, sans 
erreur appréciable, supposer égaux l’arc TT'décrit de son som­
met comme centre et intercepté entre ses côtés, et la corde 
TT de cet arc; car leur différence est une fraction très-petite 
de l’un et de l’autre. Il en est de même de l’arc moitié et de 
sa corde, et l’on peut supposer TA =  Sa. Cela posé, soit d  la 
distance Sa ; la demi-circonférence, décrite avec ce rayon, 
vaut Ttd ; comme elle contient 180° ou 648000", la longueur de

l’arc d’une seconde v a u t ,^ aAet celle de Tare//'vaut ——— ;648000 1 618000
d’ailleurs cet arc se confond avec le rayon R de l’orbite ter­
restre ; donc

■itdp
=  R.

d’où
648000

d =  6_48000 r

T

Or,  ̂'8000 _  206265, à une unité près:

donc
206265 „ d =  — —  R. («)

Cette formule sert à calculer la distance qui sépare la terre 
ou le soleil des astres dont on aura pu déterminer la parallaxe 
annuelle p. On voit, en même temps, que si une étoile avait 
une parallaxe annuelle de 4", on aurait d ~  206265 R, c’est- 
à-dire que sa distance serait 206265 fois celle du soleil à la 
terre; et comme aucune étoile connue n’a une parallaxe aussi 
considérable, toutes sont plus éloignées de nous. Si donc on 
imagine une sphère, qui aurait pour centre la terre, et pour 
rayon l’énorme distance d — 206265 R, aucune étoile connue 
n’est dans l’intérieur de cette sphère; et sans doute beaucoup 
d’entre elles sont encore bien plus distantes.

Pour se faire une idée de pareilles distances, on peut les 
comparer au chemin que la lumière fait en un an. On verra



qu’elle nous vient du soleil en 8m I83 ou en 498s; elle parcout 
donc la distance, en deçà de laquelle il n’y a pas d’étoiles, en 
20G265 fois 498 secondes; et si l’on divise ce nombre par le 
nombre de secondes de l’année, on trouve 3 ans \ environ. 
Ainsi la lumière, qui fait 77000 lieues par seconde, mettrait 
plus de trois ans à venir de l’étoile la plus voisine ! Et si cette 
étoile disparaissait tout à coup, nous la verrions briller pen­
dant trois ans encore ! Si d’autres sont mille fois plus éloi­
gnées, la lumière qui émane d’elles met plus de trois mille 
ans à faire le trajet !

Voici quelques-unes des distances les moins incertaines :
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ÉTOILES. PARALLAXE. DISTANCE.
RETARD

de
LA LUSU SRS.

DEGRÉ
d’incertitude.

a du Centaure.. . 0",91 226400 R. 3ail!,6 à rr près.
1 01e du Cygne.. . 0 ,35 589300 R. 9 ,4 à Jj près.

Wéga de la Lyre. 0 ,56 785600 H. 12 ,6 à J près.
La Polaire.......... 0  ,11 1946000 R. 31 à près.

52. L umière des étoiles. — Les étoiles sont certainement 
lumineuses par elles-mêmes; car elles ne sauraient emprunter 
leur éclat à d’autres corps qui sont beaucoup trop éloignés 
d’elles. On doit donc les considérer comme autant de soleils, 
qui peut-être échauffent et vivifient des systèmes planétaires 
comme le nôtre, imperceptibles pournous. Lesoleil lui-même 
n’est sans doute qu’une simple étoile, dont l’éclat et la chaleur 
sont relatifs à la distance qui nous sépare de lui ; car, trans­
porté à la distance d’a du Centaure, il ne brillerait plus que 
comme une étoile de troisième grandeur.

55. Dimensions des étoiles. — Les dimensions des étoiles 
sont complètement inappréciables. Plus les lunettes, à l’aide 
desquelles on les observe, sont puissantes, plus leur diamètre 
paraît petit. Si uue étoile avait seulement 1" de diamètre appa­
rent, à la distance à laquelle nous la voyons, elleserait plus d’un
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million de fois plus grosse que le soleil. Si la Chèvre avait, 
comme l’admettait Herschel, un diamètre égal à 2",3, son 
volume vaudrait plus de vingt millions de fois le volume du 
soleil.

54. Scintillation des étoiles. — Lorsqu’on regarde à l’œil 
nu une étoile brillante, comme Sirius, Aldébaran, Wéga, etc., 
on remarque dans sa lumière un certain tremblement, auquel 
on a donné le nom de scintillation. Nous consacrons, à la fin 
du volume, une note (la note IV) à la description de ce phéno­
mène, d’après Arago.

§ V. —  Étoiles doubles.

55. Étoiles doubles, leurs révolutions. — On appelle étoiles 
doubles, triples, quadruples,... multiples, des groupes de deux,
trois, quatre,...... étoiles, qui se confondent à l’œil nu, mais
que séparent de bons télescopes. Williams Herschel, qui, le 
premier, s’est occupé avec soin des étoiles doubles, en a ca­
talogué plus de cinq cents ; mais un célèbre astronome russe, 
M. Struve, en a, dans ces dernières années, porté le nombre à 
plus de trois mille. Le nombre des étoiles triples est beau­
coup moins considérable ; M. Struve n’en cite que cinquante- 
deux, parmi lesquelles se trouvent a d'Andromède, p du Loup, 
u du Bouvier. Une des étoiles quadruples les plus remarqua­
bles est £ de la Lyre. On ne connaît guère de groupes compo­
sés de plus de quatre étoiles ; cependant 8 d’Orion est une 
étoile sextuple.

Ordinairement les étoiles d’un groupe binaire ont des inten­
sités et des colorations différentes. Le plus souvent la plus 
grande est rougeâtre ou jaunâtre, et la plus petite est verdâtre 
ou bleuâtre ; ces couleurs paraissent, d’ailleurs, éprouver de 
grands changements avec le temps. Les deux étoiles d’a du 
Centaure sont l’une de première grandeur, et l’autre de 
deuxième grandeur ; celles d’»i de la Couronne sont de cin­
quième et de sixième grandeur ; celles de y de la Vierge sont 
toutes deux de troisième grandeur.

On avait cru d’abord que ce rapprochement excessif de deux

*4



étoiles d’un groupe pouvait être un effet de perspective, et 
qu’en réalité ces étoiles, placées presque sur le même rayon 
visuel, pouvaient être fort éloignées l’une de l’autre. Mais 
\V. Herschel a reconnu que les étoiles d’un même groupe sont 
réellement très-rapprochées, et qu’elles tournent périodique­
ment autour de leur centre commun de gravité, en obéissant 
aux lois de Képler (Voir le liv. Y). Voici quelques-uns des ré­
sultats auxquels on est arrivé :
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NOMS
des

ÉTOILES DOUBLES.

TEMPS
de

LA  R É V O L U T IO N .

DEMI-GRAND AXE
DE L 'E L L IP S E

vu perpendiculairement
DE v\ T E R R E .

ticinatiri.

1 Ç d’IIercule............... 3Gans 1",2 0,44
I m de la Couronne....... 43 » »
1 Ç de la Grande-Ourse. 58 3", 8 0,42

a du Centaure........... 78 12",t 0,71
| Castor....................... 253 8",l 0,76

Gle du Cvgne............. 452 15",4 »
I y de la Vierge............ 629 12",1 0,831 y du Lion................... 1200 k »

L’observation des étoiles doubles et l’étude de leurs révolu­
tions ont déjà fourni la preuve que ces grands corps sont 
régis par la même force qui, dans le système solaire, préside 
aux mouvements des planètes autour du soleil ; elles ont dé­
montré que l’attraction newtonienne était réellement univer­
selle. Mais cette étude pourra fournir à la science, dans l’ave­
nir, des résultats d’une importance extrême ; elle pourra 
servir à déterminer les distances des étoiles à la terre, sur 
lesquelles nous avons si peu de données certaines ; elle pourra 
même conduire à la connaissance de leurs masses. Les étoiles 
doubles servent, d’ailleurs, dès à présent, à juger de la bonté 
et de la puissance des lunettes et des télescopes de grande, 
dimensions. On peut lire, dans Y Astronomie populaire (t. Ier, 
p. 473 et suiv.), les pages intéressantes que F. Arago consacre 
à ces découvertes de l’avenir.



g VI. —  Voie lactée, nébuleuses.

86. Voie lactée. — La Voie lactée est une bande blanchâtre, 
irrégulière, qui partage le ciel, du nord-est au sud-ouest, en 
deux parties à peu près égales. Elle paraît formée d’une mul­
titude d’étoiles, trop petites pour être visibles à l’œil nu, et 
qui, accumulées dans une zone étroite de la sphère, produi­
sent cette lueur laiteuse qu’on voit dans les nuits sans lune. 
Elle passe sur plusieurs des constellations que nous avons 
décrites, telles que Céphée, Cassiopée, Persée, le Cygne, l’Ai­
gle, etc.

87. Nébuleuses. — Les nébuleuses sont de nombreux petits 
nuages blanchâtres, disséminés dans le ciel, et qui paraissent 
avoir quelque analogie avec la voie lactée. Lorsqu’on les ob­
serve avec de puissants télescopes, on voit quelques-unes 
d’entre elles se résoudre en étoiles distinctes extrêmement 
rapprochées. Mais le plus grand nombre résistent aux plus 
forts grossissements, et paraissent constituées par une matière 
diffuse répandue dans l’espace.

La première nébuleuse fut découverte, en 1612, par Simon 
Marius, dans la Ceinture d'Andromède, près de l’étoile v ; cet 
observateur comparait sa lumière à celle d’une chandelle vue 
à travers une feuille de corne. Sa longueur est de 2° {, sa lar­
geur est de plus de 1°. En 1656, Huyghens observa la belle né­
buleuse située autourdel’étoileô, dans la constellation d'Orion. 
Halley, en 1716, ne connaissait encore que six nébuleuses : 
Lacaille, vers 1735, en signala vingt-huit nouvelles. Mais c’est 
â W. Herschel que l’astronomie doit les plus nombreuses dé­
couvertes ; de 1786 à 1803, l’illustre astronome catalogua deux 
mille cinq cents nébuleuses.

Tout le monde connaît le groupe des Pléiades, situé dans la 
constellation du Taureau, et composé de soixante-quatre étoi­
les très-voisines, dont les plus belles, au nombre de six ou sept, 
sont de troisième et de quatrième grandeur. Ce groupe est, à 
la vue simple, et pour certains observateurs, une masse con­
fuse de lumière, une nébuleuse ; mais elle se résout à l’aide
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de la lunette la plus faible. On peut en dire autant du groupe 
des Hyades, situé sur le front du Taureau, et du groupe du 
Cancer, nommé Prœsepe ou la Crèche; le moindre grossisse­
ment les décompose en étoiles distinctes. Il est des amas stel­
laires qui sont des nébuleuses pour un grossissement très-fai­
ble, et que résout un télescope grossissant 50 ou iOO fois. Il 
en est d’autres qui exigent, pour se décomposer, des grossis­
sements de 500 fois et au delà. Ce sont de nombreux 
faits de cette nature qui avaient porté Herschel à affirmer 
que les nébuleuses sont toutes des amas d’étoiles; et que, 
si quelques-unes résistent encore à la décomposition, il 
faut en chercher la cause dans un trop grand éloignement ou 
dans une trop grande concentration des étoiles composantes; 
mais il reconnut plus tard que cette généralisation était trop 
hasardée, et que toutes les nébuleuses ne sont pas résolubles.

58. Nébuleuses résolubles. — Les nébuleuses résolubles af­
fectent le plus ordinairement la forme circulaire, ou plutôt la 
forme sphérique. On remarque alors que l’intensité de la lu­
mière va en croissant des bords au centre, le rayon visuel cô­
toyant un nombre d’étoiles d’autant plus grand qu’il s’éloigne 
plus de la circonférence. On peut citer, comme exemple, la 
nébuleuse située près de w du Centaure.

Le nombre des étoiles contenues dans une nébuleuse glo­
bulaire peut être très-considérable; on calcule qu’une nébu­
leuse, ayant un diamètre de 10', doit en contenir plus de vingt 
mille.

Certaines nébuleuses sont perforées ou en anneau; telle est, 
par exemple, celle qui sépare les étoiles 6 et y de la Lyre; d’au­
tres sont contournées en spirales.

Il résulte des observations d’Herschel que les nébuleuses ne 
sont pas uniformément distribuées dans le ciel, et que les ré­
gions les plus pauvres en étoiles sont celles qui contiennent 
les nébuleuses les plus riches.

59. Nébuleuses non résolubles. — Les nébuleuses non réso­
lubles occupent dans le ciel des étendues considérables; il en 
est qui ont 4° 9' dans une seule de leurs dimensions. Ces gran­
des taches lumineuses n’ont pas de forme régulière ; leurs
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contours "ont, les uns rectilignes, les autres curvilignes; 
quelques-unes se terminent brusquement d’un côté, et se 
fondent, de l’autre, dans la lumière du ciel, par une dégrada­
tion insensible. Elles affectent, dit Arago, toutes les formes 
fantastiques des nuages tourmentés par des vents violents et 
souvent contraires.

La lumière des vraies nébuleuses est très-faible, et, en gé­
néral, uniforme; quelques points particuliers, seulement, 
sont un peu plus brillants. Herschel pensait que cette augmen­
tation d’intensité est l’effet d’une force attractive qui condense 
la matière phosphorescente, et qui l’amène peu à peu à l’ap­
parence sidérale, de sorte que nous assisterions, comme le dit 
encore Arago, à la formation de véritables étoiles.

GO. Nébuleuses planétaires. — Certaines nébuleuses non 
ésolubles sont circulaires ou légèrement elliptiques; leur 
éclat est uniforme : elles ressemblent aux planètes de notre 
système. Herschel les appelait nébuleuses planétaires. La plus 
remarquable est celle qui fut découverte par Méchain, près de 
6 de la Grande-Ourse ; son diamètre apparent est de 2' 40" ; en 
la supposant aussi éloignée de la Terre que la 61a du Cygne, on 
calcule que son diamètre réel vaudrait 47 fois le diamètre de 
l’orbite de la planète Neptune.

6 1. Étoiles nébuleuses. — Herschel donnait le nom d'étoiles 
nébuleuses à des étoiles environnées de nébulosités faisant 
corps avec elles. Telle est l’étoile de huitième grandeur, située 
près de K de Persée. Il supposait que ces atmosphères doivent, 
en se condensant peu à peu, se réunir aux étoiles centrales et 
augmenter leur éclat. Dans sa pensée, le premier état de la 
matière cosmique est celui des nébuleuses également brillan­
tes dans toutes leurs parties ; le second état se manifeste par 
des condensations locales progressives, dont lerésultat est, à la 
longue, une étoile nébuleuse; puis enfin la condensation, con­
tinuant à se produire, amène l’étoile nébuleuse à l’état défini­
tif d'éloile proprement dite.

C’est à l’avenir qu’appartient la solution de ces grandes 
questions; la science dira sans doute un jour s’il faut adopter 
ou rejeter les vues grandioses d’Herschel. Nous ne pouvons
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dans un ouvrage élémentaire, développer toutes les raisons 
qui militent en faveur de ces magnifiques conjectures; mais 
le lecteur qui voudra les connaître pourra consulter le livre XI 
de Y Astronomie populaire.

EXERCICES ET APPLICATIONS.

6Î. — 1° Trouver la plus petite déclinaison d’une étoile qui, à Paris, ne 
se couche pas.

2° Trouver la déclinaison d’une étoile qui, dans le mouvement diurne, 
passe au zénith de Paris.

3“ Connaissant l’angle a que fait avec la méridienne, à Paris, le rayon 
visuel mené au point de lever d’une étoile, calculer sa déclinaison, sa plus 
grande hauteur au-dessus de l’horizon, et la durée de sa présence au-desus 
de l’horizon.

V' Une étoilé passe IG heures au-dessus de l’horizon de Paris et 8 heure» 
au-dessous. Quelle est sa déclinaison?

COSM. G. 4



LIVRE DEUXIÈME

LA TERRE 6

SA FORME, SES DIMENSIONS.

CHAPITRE PREMIER

FIGURE DE LA TERRE.

(Première approximation.)

Phénomènes qui donnent une première idée de sa forme. — Pôles, parallèles, 
équateur. — Méridiens.—Longitude et latitude géographiques.

§ 1. — Notions prélim inaires.

G5. La terre n’est pas plane. — Après avoir démontré la 
loi générale du mouvement diurne, et fait connaître le monde 
des étoiles, il nous faut étudier avec soiir le globe qui nous 
porte, pour lui assigner plus tard la place qu’il doit occuper 
dans l’univers.

On n’a pas cru longtemps que la terre était plane, et que la 
voûte céleste s’appuyait sur elle aux bornes de l’horizon. Il est 
facile de citer des faits qui ont montré aux premiers observa­
teurs la rondeur de la terre et son isolement dans l’espace. 
Ainsi, 1° lorsqu’un vaisseau s’éloigne du port, un spectateur 
placé sur le rivage le voit peu à peu s’enfoncer sous l’horizon; 
le corps du navire disparaît le premier, puis les voiles infé­
rieures, puis les hunes et enfin l’extrémité supérieure des 
mâts les plus élevés. Pour revoir alors le navire, il suffit au 
spectateur de s’élever au-dessus du sol, et ce sont les sommets 
des mâts et les voiles supérieures qui reparaissent tout d’abord. 
Le phénomène se manifeste en sens inverse, lorsque le vais­



seau s’approche du port. Or, si la mer était plane, ne seraît-ce 
pas le corps du navire qui devrait paraître le premier ou dis­
paraître le dernier? Au contraire, l’hypothèse de la convexité 
de la mer explique parfaitement les apparences. Car l’horizon 
sensible est alors un cône tangent à la surface de la mer, ayant 
son sommet dans l’œil de l’observateur ; à mesure que le vais­
seau s’éloigne du point A (fig. 13), et atteint les positions
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B, B', B", etc., il descend progressivement au-dessous du plan 
tangent ABT, et devient invisible en BIV ; mais, si le spectateur 
s’élève en A', son horizon s’abaisse, et il peut revoir la partie 
la plus élevée du navire.

2° Lorsqu’on s’avance vers le nord, on reconnaît que l’étoile 
polaire s’élève au-dessus de l’horizon; elle s’en rapproche, 
au contraire, si l’on se dirige vers le sud. Ce deuxième fait 
est une conséquence naturelle de la convexité de la terre 
dans le sens du méridien, et ne peut s’expliquer qu’en admet­
tant cette hypothèse ; car, si la terre était plane, la hauteur 
méridienne des étoiles devrait rester invariable, à cause de 
leur distance infinie.

3° De plus, les voyages autour du monde ont, depuis long­
temps, mis hors de doute la proposition que nous examinons. 
Magellan, le premier, parti des côtes de Portugal, en se. diri­
geant vers l’ouest, atteignit les ports de la Chine, après avoir 
doublé le cap Horn. Puis, ses vaisseaux revinrent de Chine en 
Europe, en continuant leur route à l’ouest. Il est donc indu­
bitable que la terre est arrondie dans ce sens. Depuis, de 
nombreux voyages, exécutés dans toutes les directions, ont 
démontré mille fois la môme vérité.

4° Enfin, lorsque nous étudierons les éclipses de lune, nous 
dirons qu’elles ont pour cause l’ombre portée par la terre, du
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côté opposé au soleil. Or, l’échancrure déterminée sur la lune 
par cette ombre, dans une éclipse partielle, n’est pas rectili­
gne ; sa courbure est toujours convexe vers la partie éclairée 
de l’astre; il faut en conclure que le cône d’ombre a lui- 
môme une forme arrondie, et que la terre qui le projette a la 
môme forme.

Ainsi la terre et les eaux forment une surface arrondie dans tous 
les sens, et isolée dans l'espace.

G4. S phéricité de la terre. — Soit CAD la surface de la 
mer, au-dessus de laquelle l’observateur est placé en B 
(fig. 15) : l’horizon, en ce point, est le plan BH perpendicu-

voit la partie AT de cette surface, et l’horizon sensible est dé­
terminé dans cette direction par cette tangente. L’angle HBT 
(n° 8) est la dépression apparente. Or, de quelque côté que l’ob­
servateur B se tourne, il trouve que cet angle est toujours le 
même, tant qu’il reste à la même hauteur. Il faut en conclure 
que la courbure de la mer est uniforme, c’est-à-dire que sa sur­
face est sphérique. Et il est naturel de penser, qu’aux petites 
inégalités près, il doit en être de même de la terre ferme (1) : 

G5. F ausse idée de la pesanteur. — Est-il nécessaire, en 
terminant l’exposé de ces premières notions, de montrer l’ab­
surdité de cette croyance primitive qui veut que la terre, ainsi 
isolée, tombe dans l’abîme, et que nos antipodes ne puissent 
se soutenir, la tête en bas, sur le sol? Qui ne voit que celle 
erreur est due à une fausse idée que l’on se fait de la pesan­
teur; que cette force réside à l’intérieur du globe; que, par 
conséquent, tomber, c’est se diriger vers son centre, pour les 
antipodes comme pour nous ? Qui ne comprend que la terre 
n’a besoin d’aucune force pour la maintenir dans l’espace, si 
elle n’est attirée vers aucune région par une force extérieure, 
et que, pour elle, le mot tomber n’a aucun sens?

(t) Voir la note v, à la fin du volume.

Fia. 15.

laire à la verticale AB. 
Si l’on mène par le 
point B une tangente 
BT à la surface de la 
m er, l’observateur



GO. Ilevenons maintenant à l’étude de la forme de la terre. 
Il résulte des considérations que nous venons de développer, 
qu’il est permis, comme première approximation, de la sup­
poser sphérique. D’ailleurs, ainsi que nous l’avons dit, à pro­
pos de la distance qui nous sépare des étoiles, la terre peut 
être considérée comme un point dans cette immense étendue, 
et l’on peut prendre son centre pour celui de la sphère cé­
leste.

G7. Axe, pôles. — Cela posé, l’axe de la sphère céleste tra­
verse la terre suivant un diamètre pp', qu’on appelle axe ter­
restre(fig. 16) : c’est la droite 
idéale autour de laquelle a 
lieu la rotation réelle. Les 
points où l ’axe rencontre 
la surface sont les pôles ter­
restres : p est le pôle bo­
réal, p' le pôle austral.

É quateur, méridiens. —
Le plan de l’équateur cé­
leste, passant par le centre 
de la terre, la coupe sui­
vant un grand cercle eqeq', 
appelé équateur terrestre ou ligne équinoxiale. Les plans des 
cercles horaires célestes, contenant tous l’axe, tracent sur la 
surface des grands cercles pap', pbp', etc., qu’on nomme mé­
ridiens terrestres, et qui se rencontrent tous aux deux pôles.

P arallèles. —  Quant aux plans des parallèles célestes, ils 
ne rencontrent pas la surface de la terre; car elle est si petite, 
que deux plans parallèles, qui lui seraient tangents aux deux 
pôles, se confondraient avec le plan de l’équateur céleste, et 
passeraient par les mêmes étoiles. Mais, si l’on imagine des 
cônes, ayant pour sommet le centre T et pour bases les paral­
lèles célestes, ces cônes déterminent, par leur intersection 
a\ec la surface de la terre, des cercles cd, dd', auxquels on
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donne le nom de parallèles terrestres, et qui sont à la môme 
distance angulaire de l’équateur que les cercles diurnes cor­
respondants. Il est évident qu’on peut aussi les considérer 
comme ayant été déterminés par des plans perpendiculaires 
à l’axe pp'.

68. L o n g i t u d e  g é o g r a t >i i t q t t e . — La position d’un point se 
détermine, à la surface de notre globe, au moyen de deux

demi-grand cercle pcp' ; ces deux arcs sont les méridiens des 
deux lieux a et c.

On appelle longitude du lieu a, l’angle dièdre de son méri­
dien avec le méridien choisi pçp'. Cet angle se mesure par 
l’arc id compris, sur l’équateur, entre les deux demi-grands 
cercles; et il se compte de 0° à 180°, de part et d’autre du 
point i, qui est le 0° des longitudes. La longitude est orientale 
ou occidentale, suivant que le point a est à l’est ou à l’ouest du 
méridien origine.

6 9 .  P remier méridien. — Le méridien pcp', que l’on prend 
pour origine des longitudes, se nomme le premier méridien. 
Autrefois tous les pays avaient adopté, avec Ptolémée, le même 
premier méridien ; il passait par l'île de Fer, la plus occidentale 
des Canaries; et, comme tout le monde connu ne s’étendait pas 
au delà, toutes les longitudes étaient orientales. Aujourd’hui 
chaque nation a le sien ; c’est ordinairement celui qui passe 
par le principal observatoire du pays. Pour nous, c’est le mé­
ridien de l’observatoire de Paris ; pour l’Angleterre, c’est

coordonnées tout à fait ana­
logues à l’ascension droite et 
à la déclinaison d’une étoile : 
c’est la longitude et la la­
titude. Soient (fig. 17) T la
terre, ppJ l’axe, eqeq' l’équa­
teur, et a un point quelcon­
que pris sur la surface. 
Menons par ce point le demi- 
grand cercle pap'; choisis­
sons, en outre, arbitraire­
ment un lieu c, et traçons le
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celui de Greenwich. Ce dernier est à 2° 20' 9",4 à l'ouest du 
premier.

La longitude d’un lieu dépend donc de la position de son 
premier méridien; mais il est facile de la transformer pour 
la rapporter à un autre. En effet, en général, une longitude 
orientale anglaise surpasse de 2° 20'9",4 la longitude fran­
çaise du même lieu. Si cependant un lieu est compris entre 
les premiers méridiens de Paris et de Greenwich, la longitude 
est occidentale pour l’un et orientale pour l’autre, et la somme 
des deux arcs vaut 2° 20' 9",4. Si le lieu est compris entre les 
prolongements des méridiens, sa longitude est orientale pour 
la France, occidentale pour l’Angleterre, et la somme des 
deux arcs vaut 360° — 2° 20' 9",4, ou 357° 39' 50",G.

Cependant il serait utile que les peuples s’entendissent pour 
adopter, comme autrefois, un premier méridien commun.

70. Latitude géographique. — On nomme latitude d’un lieu 
a, l ’angle que la verticale Taz du lieu fait avec le plan de 
l’équateur. Cet angle aTcf est mesuré par l’arc ad compris sur 
le méridien pd entre le point a et l’équateur ; il se compte de 
0° à 90°, en allant de l’équateur aux pôles. La latitude est bo­
réale ou australe, ou bien positive ou négative, suivant que le 
point a est dans l’hémisphère boréal ou dans l’hémisphère 
austral.

On remarquera avec soin, que tous les lieux situés sur un 
même demi-méridien ont môme longitude, ceux de l'autre 
moitié ayant une longitude supplémentaire et comptée en 
sens contraire, et que tous les lieux situés sur un même paral­
lèle ont même latitude.

On verra facilement, que la position d’un point sur le 
globe est déterminée, quand on connaît la grandeur et le 
signe de sa latitude, ainsi que la grandeur et le sens de sa 
longitude.

71. Détermination de la latitude sur terre. — Exposons 
maintenant comment on peut déterminer la latitude d’un 
point du globe.

T héorème. —La latitude d’un point est égale à la hauteur du 
pôle au-dessus de l’horizon de ce point.



En effet (fig. 18), soient EPE' le méridien du lieu A, EE' et 
HH' les traces de l’équateur et de l’horizon sur ce plan. La la­
titude du point A est l’angle ATE. Or le rayon visuel, mené 
du point A au pôle céleste (lequel est situé sur TP prolongé),

va rencontrer la droite TP à 
l’infini, c’est-à-dire, lui est 
parallèle, à cause de la dis­
tance infinie des étoiles; donc 
ce rayon est dirigé suivant 
la droite AP" parallèle à TP, 
et il est perpendiculaire à l’é­
quateur EE'. D’un autre côté, 
le plan EPE' contient la 
droite AP', et est perpendi­
culaire au plan de l’horizon; 
donc AH est la projection de 
AP' sur l’horizon, et l’angle 
P'AH mesure la hauteur du 

pôle. Or les deux angles P'AH, ATE, sont égaux ; car ils sont 
aigus, et ils ont leurs côtés respectivement perpendiculaires. 
Donc la latitude est égale à la hauteur du pôle au-dessus de 
l’horizon.

On remarquera que cette démonstration est indépendante 
de la forme du méridien, pourvu que l’on remplace AT par la 
verticale du lieu. Ainsi l'angle que forme la verticale d’un lieu 
avec l’équateur est égal à la hauteur du pôle au-dessus de l’ho­
rizon.

Nous avons dit (n° 21) comment, sur terre, on peut mesurer, 
en un point donné, la hauteur du pôle; cette mesure fournira 
donc la latitude du lieu. On a vu, qu’à l'Observatoire de Paris, 
la hauteur du pôle, et, par suite, la. latitude est égale à 
48° 50' 11".

72. Latitude en mer. — En mer, on ne peut pas déterminer 
la hauteur du pôle par le procédé du n° 21 : il n’est pas pos­
sible, on le comprend aisément, d’installer sur le navire 
un cercle mural ou une lunette méridienne. On a donc re­
cours à un autre procédé qui est fondé sur l ’emploi du
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sextant (1). On mesure, à l’aide de cet instrument, la hau­
teur méridienne d’une étoile dont la déclinaison O, calculée 
à l’avance, se lit dans la Connaissance des temps; et l’on prend 
le complément de celte hauteur, qui est la distance zéni­
thale Z de l’étoile. En désignant par P la hauteur du pôle ou 
la latitude du lieu, on a (n° 40) :

® = P + Z ,  d’oùP =  (Q — Z.

Cette formule fait connaître P. On sait d’ailleurs qu’on doit 
y considérer Z comme positive ou comme négative, suivant 
que l’étoile passe au méridien au nord ou au sud du zénith.

75. D é t e r m i n a t i o n  d e  l a  l o n g i t u d e . —  T h é o r è m e . — La lon­
gitude d’un point du globe a pour mesure le temps sidéral qui 
s'écoule entre les passages d’une même étoile au méridien du lieu 
et au premier méridien, ou bien encore, la différence des heures 
que l’on compte, au même instant, sous ces deux méridiens.

En effet, concevons qu’on ait tracé, sur la surface de la 
terre, vingt-quatre demi-grands cercles passant par les pôles 
et distants entre eux de 15°, et que l’un d’eux pap’ (fig, t9) soit 
le premier méridien. Dans le mouvement diurne apparent, le 
cercle horaire d’une étoile connue, Rigel, par exemple, vient 
se confondre successivement 
avec chacun de ces méri­
diens; et, comme le mouve­
ment est uniforme, il s’é­
coule une heure sidérale 
entre deux coïncidences suc­
cessives; en d’autres termes,
Rigel traverse les plans de 
ces divers méridiens à une 
heure d’intervalle. Si donc 
un lieu m se trouve sur le 
méridien pbp’ qui fait un an­
gle de 15°, à l’est, avec le premier méridien pap’, Rigel pas-

(1) V o ir ,  à  l a  f in  d u  v o lu m e ,  l a  n o t e  v i ,  r e l a t i v e  à  l a  d e s c r i p t i o n  e t  à  l ’u s a g e  
d e  c e t  i n s t r u m e n t  r e m a r q u a b le .
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sera au méridien de ce lieu une heure avant de passer au pre­
mier méridien; et le temps écoulé (une heure) entre les 
deux passages sera la mesure de la longitude du lieu (13°). 
En général, à cause de l’uniformité du mouvement diurne, la 
longitude est proportionnelle au temps écoulé, qui peut, par 
conséquent, lui servir de mesure.

On peut aussi prendre pour mesure de la longitude la diffé­
rence des heures sidérales, que l’on compte, au même instant, 
sous les deux méridiens. Car, puisque l’on prend pour origine 
du jour sidéral l'instant du passage du point vernal ou d’une 
certaine étoile à chaque méridien, on comptera 0h 0“ 0S au 
lieu m, au moment de ce passage; puis on comptera de même 
0h 0“ 0S sous le premier méridien, lorsque le point ou l’astre 
y passera à son tour. Mais, à ce dernier instant, on ne comptera 
plus 0h, mais bien l h au lieu m, puisqu’il s’est écoulé une 
heure entre les deux passages. La différence des heures 
comptées, au même instant, sous les deux méridiens, sera 
donc l h, et la longitude du lieu m sera 13°. En général, on 
voit, qu’à cause de l ’uniformité du mouvement diurne, la dif­
férence des heures est proportionnelle-à la longitude, et peut 
lui servir de mesure.

74. De là résultent plusieurs méthodes pour évaluer la lon­
gitude d’un point du globe. La première est celle des chrono­
mètres.

E mploi des chronomètres, montres marines,garde-temps, pour 
mesurer les longitudes. — Que l’on règle une horloge avec 
le plus grand soin sous le premier méridien, celui de Paris, 
je suppose, c’est-à-dire, qu’on lui fasse marquer 0h 0“ 0S au 
moment où une étoile, Rigel, passe au méridien; ce chrono­
mètre, transporté partout ailleurs, continuera à donner 
l’heure de Paris. Si donc, au lieu m, on règle un autre chro­
nomètre sur la même étoile, la comparaison des heures qu’ils 
marqueront tous deux au môme instant donnera la mesure 
de la longitude. Si, par exemple, celui de Paris marque 
3h 52“ 17% au moment où celui du lieu m marque 4h 18“ 27% la 
différence des heures est 0" 26“ 10% et la longitude,' calculée 
à raison de 15° par heure (n° 29) est 6° 32' 30". D’ailleurs, il est

5 S
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facile de voir qu’elle est orientale, puisqu’il est plus tard en m 
qu'à Paris, au même instant.

7S. Méthode des signaux instantanés. — On détermine en­
core les longitudes des points du globe par la méthode des 
signaux instantanés. Ainsi la télégraphie électrique peut ser­
vir merveilleusement à cet usage ; car un signal est transmis 
par elle avec une vitesse qu’on peut dire infinie. Que deux ob­
servateurs, placés en deux stations de la ligne électrique, 
règlent leurs chronomètres sur la même étoile, et qu’au mo­
ment du signal transmis, chacun note l’heure indi­
quée par la pendule ; il leur suffira de se communi­
quer leurs résultats, pour calculer immédiatement 
la différence des heures comptées au même instant 
sous les deux méridiens, et, par suite, la longitude 
de l’un des lieux par rapport à l’autre. Ce procédé 
est le meilleur de tous ; c'est celui qu’ont employé 
récemment les directeurs des observatoires de Paris 
et de Greenwich pour déterminer la différence des 
longitudes des deux lieux ; à l’aide du télégraphe 
sous-marin qui traverse la Manche, ils ont trouvé 
cette différence égale à 2° 20' 9",4, valeur plus faible 
que celle qu’on admettait auparavant, et qui était 
2° 20' 24".

Mais ce procédé ne peut être.employé que sur les 
lignes de fer. Avant la découverte de la télégraphie 
électrique, Cassini avait indiqué la méthode des si­
gnaux de feu. Deux observateurs, placés à 40 ou 50 
lieues de distance l’un de l’autre, et munis de chro­
nomètres et de lunettes méridiennes, voient, au 
même instant, un signal produit par la combustion 
d’un peu de poudre, pendant la nuit, à une station 
intermédiaire ; ils notent chacun l’heure correspon­
dante, et ils en déduisent, comme tout à l’heure, la 
différence des longitudes de leurs points d’observa­
tion. Si les points sont trop éloignés pour que le 
même signal puisse être aperçu par chacun des deux obser­
vateurs, on établit plusieurs stations intermédiaires A', A"
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entre les stations extrêmes A et B (fig. 20) ; et l’on place à 
chacune d’elles un observateur, muni d'un chronomètre ré­
glé de manière à battre 86400 secondes par jour sidéral. Entre 
chaque station, on fait successivement des signaux de feu, en 
C, C', C". Le premier signal, en C, est visible de A et de A' : 
l’observateur A note l’heure sidérale exacte du lieu, et l’ob­
servateur A' note au même instant l’heure que marque son 
chronomètre. Quelques instants après, le deuxième signal a 
lieu en C', et est visible en A' et en A" : l’observateur A', en 
notant l’heure de ce nouveau signal, détermine le temps t  

qui s’est écoulé depuis le premier ; l’observateur A" a noté 
d’ailleurs, en même temps, à son chronomètre, l’heure de 
ce deuxième signal. Puis le troisième signal se produit en C", 
et est vu de A" et de B simultanément : A" connaît donc, par 
son chronomètre, le temps (  qui a séparé le troisième signal 
du deuxième, puisqu’il les a vus tous deux ; d’ailleurs B note 
l’heure sidérale exacte de sa station, au moment où il aperçoit 
le signal C". Il est évident qu’en ajoutant t -)- t'h. l’heure qu’il 
était en A, au moment du premier signal, on obtient l’heure 
qu’il était au même point, au moment du troisième ; on con­
naît donc ainsi les heures sidérales des stations A et B, à l’ins­
tant du troisième signal, et par conséquent la différence de 
leurs longitudes.

76 .  Longitude en mer. — Il n’est pas aussi facile de déter­
miner les longitudes en mer. L’usage du sextant devient alors 
indispensable pour .calculer l’heure du lieu où l’on se trouve. 
Mais nous renvoyons pour plus de détails à la note vu, à la fin 
du volume.

7 7 .  T ropiques, cercles polaires, zones. —Les Tropiques sont 
deux parallèles de la terre, menés à la latitude de 23° 2T 3o" 
environ : le tropique boréal Tr se nomme tropique du Cancer, 
l ’autre TV est le tropique du Capricorne (fig. 21).

Les cercles polaires CG et C'G' sont des parallèles menés à 
23° 27' 30" environ des pôles ; ils portent les noms de cercles 
polaires arctique et antarctique. Nous verrons, dans la théorie 
du soleil, quelle est l’origine de ces dénominations. Nous 
verrons aussi pourquoi la zone comprise entre les deux tropi-



CHAT. II. — FIGURE DE LA TERRE (2 ' APPROXIMATION)- «1 

ques se nomme zone torride ; pourquoi les deux zones com­
prises entre chaque tropique 
et le cercle polaire corres­
pondant s’appellent zones 
tempérées, et pourquoi celles 
qui s’étendent du cercle po­
laire au pôle sont les zones 
glaciales. Disons seulement 
ici que, les surfaces de ces 
zones étant proportionnelles 
à leurs hauteurs, on peut 
aisément calculer leur éten­
due, à l ’aide des premiers 
éléments de la trigonométrie rectiligne, et qu’on obtient les 
résultats suivants :

La surface totale de la terre étant prise pour unité, 
la zone torride — 0,40 

ch aq u e  zone tem p é rée  =  0,¾} 
chaque zone glaciale =  0,04.

CHAPITRE II

FIGURE DE LA TERRE.

(Deuxième approximation.)

Valeurs numériques des degrés mesurés en France, en Laponie, au Pérou 
et rapportés à l’ancienne toise. Leur allongement à mesure qu’on s’ap­
proche des pôles. — Rayon et aplatissement de la terre. — Longueur 
du mètre.

7 0 .  MARCnE A SUIVRE POUR DÉTERMINER LA VRAIE FlGURc DE LA
terre . — Nous avons supposé, dans le chapitre précédent, 
que la terre était une sphère ; et nous n’en avons donné que 
des preuves trop peu concluantes pour être acceptées sans vé- 
riücation ultérieure. Nous devons donc maintenant procéder
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à une étude plus minutieuse, plus approfondie, de la ligure 
de notre globe. La marche que nous suivrons à cet effet con­
siste à mesurer avec soin, à differentes latitudes, des arcs de 
méridien, et à évaluer le nombre de degrés qu’ils renferment, 
en les supposant circulaires ; puis à comparer les mesures ob­
tenues les unes avec les autres. Si la terre est sphérique, les 
résultats doivent concorder entre eux, et donner la môme va­
leur pour le rayon ; si l’on trouve, au contraire, des diffé­
rences notables, on doit en conclure que la terre n’a pas la 
forme que nous lui avons supposée.

. § I. —  F o r m e  e l l i p t i q u e  d u  m é r id ie n .

79.  Mesure d'un arc du méridien. —L'opération géodésique, 
qui a pour but la mesure de la longueur d’un arc du méridien, 
présente des difficultés matérielles d’exécution que nous ne 
pouvons pas indiquer ici ; on en trouvera l’exposition com­
plète dans les ouvrages spéciaux (1). Nous nous bornerons à 
faire connaître la marche générale de ce grand travail. Soit 
AB (üg. 22) l’arc du méridien dont il s’agit de trouver la lon-

gueur. On mesure avec le plus grand soin une base AC, allant 
de l’extrémité A du méridien à une première station G. Puis 
on choisit, de part et d’autre de la méridienne, d’autres sta­
tions D, E, F, G, etc., de chacune desquelles on puisse voir les 
stations voisines ; et l’on mesure, au théodolite, les angles de 
chacun des triangles ACD, CDE, EDF, etc., qu’elles forment

(!) Voir le Traité d ’astronomie physique de il. Bioi, t. III, 3« édition.



entre elles. Cette première opération permet de résoudre ces 
divers triangles par la trigonométrie : car, dans le premier, on 
connaît AC et les angles, et l’on peut calculer CD ; dans le 
deuxième, on connaît CD et les angles, et l’on peut calculer DE; 
dans le troisième, on connaît DE et les angles, et l’on peut 
calculer EF, et ainsi de suite. Puis on détermine en A la direc 
tion de la méridienne par le procédé ordinaire (n° 19), et l’on 
mesure l’angle MAC que cette direction fait avec la base AC ; 
on connaît donc, dans le triangle ACM, le côté AC et les angles 
adjacents, et l’on peut calculer le premier tronçon AM de la 
méridienne. On calcule en même temps l’angle M et le côté 
CM ; on connaît donc, dans le triangle MDN, le côté DM =  CD 
— CM, et les angles adjacents, et l’on peut calculer le deuxième 
tronçon MN de la méridienne, l’angle N et le côté DN. On con­
naît alors, dans le triangle NEP, le côté EN =  DE— DN, et les 
angles adjacents, et l’on peut calculer le troisième tronçon NP 
de la méridienne, et ainsi de suite. On comprend que l’on 
pourra ainsi dé terminer par parties la longueur de l'arc total AB.

Si l’on ne pouvait pas mesurer directement la base AC, on 
en mesurerait une autre dans une plaine voisine, et on la 
relierait au côté AC, et par suite au réseau des triangles, par 
une série de triangles auxiliaires, dont on calculerait d’abord 
les éléments de la même 
manière. On obtiendrait 
ainsi, par le calcul, la lon­
gueur de la droite AC, et 
l’on opérerait alors sur cette 
droite, comme nous venons 
de le dire.

80. Nombre de degrés de 
l’arc du m éridien . — En ad­
mettant que l’arc ainsi me­
suré soit circulaire, on dé­
termine facilement le nom­
bre de degrés qu’il contient.
Car soit PAP'((ig. 23) le mé­
ridien sur lequel est compté l’arc AB dont on a
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longueur (n° 79) ; les latitudes des points À et B sont les nom­
bres de degrés contenus dans les arcs AE et BE, et par suite le 
nombre de degrés de l’arc AB est la différence de ces latitu­
des. 11 suffit donc de mesurer les latitudes des points extrêmes 
de la méridienne pour connaître, par leur différence, le 
nombre de degrés de l’arc mesuré.

La latitude du point A se détermine à la manière ordinaire, 
(n° 71) ; car l’astronome peut choisir librement le point de 
départ. Mais il peut arriver que l’autre extrémité de la méri­
dienne ne soit pas un point convenable pour y établir les in­
struments de mesure. On détermine alors la latitude de ce 
second point par le calcul. Pour cela, on termine l’arc du mé­
ridien au point S (fig. 22), où cet arc est rencontré par la ligne 
qui joint les deux dernières stations I et H ; on mesure les la­
titudes X et X' de ces stations. Puis, concevant que l’on abais­
se des points I et H sur AB des perpendiculaires (qui se con­
fondent avec les parallèles de ces points), on compare les 
triangles semblables qui ont pour bases ces perpendiculaires, 
et pour sommet commun le point S. En désignant par A la 
latitude cherchée du point S, on a :

X — A ST A—X' _  STI
A — X'~ SH ’ °U X — X '~ 111’

formule qui fait connaître A.
8 1. Longueurs de l’arc d’undfgréetdu raton du méridien. — 

Si a est la longueur de l’arc, et si n est le nombre de degrés

qu’il contient, la longueur de l’arc d’un degré est-; par suite,
n

celle de la demi-circonférence est -  x  T 80, et le rayon de 
a 180

cette circonférence e s t - x ---- . Dans ces formules, n est ex-n ■z
primé en degrés et fraction de degré.

8 2 . Valeurs comparatives des degrés a  différentes latitu­
des. — Les opérations que nous venons d’exposer ont été réel­
lement exécutées sous différentes latitudes. Ainsi Bouguer et 
La Condarnine allèrent, en 1736, mesurer un degré du méri­
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dien au Pérou, près de l’équateur ; tandis que Maupertuis, 
Clairaut et leurs collègues se rendirent en Laponie dans le 
môme but. Picard, avait, un demi-siècle auparavant, mesuré, 
avec une précision remarquable, la longueur du degré en 
France.-Voici les résultats obtenus pour la longueur de cet 
arc d’un degré ; on a trouvé :
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Au Pérou........................  56750 toises,
En France......................  57060 toises,
En Laponie..................... 57Î-22 toises.

On voit que la longueur du degré du méridien va en augmen­
tant quand on va de l'équateur au pôle. Il faut en conclure que 
la terre n’est pas une sphère.

8 5 . Hypothèse d u  méridien elliptique. — Quelle est donc 
la forme du méridien terrestre? Si l’on admetque la terre a été 
fluide à l’origine, et si l’on se fonde sur les lois mécaniques du 
mouvement de rotation, on peut conjecturer que le globe a 
pris, sous l’influence de la force centrifuge, la forme d’un 
ellipsoïde de révolu­
tion autour de l’axe 
des pôles. Admettons 
pour un instant celte 
nouvelle hypothèse.
Les méridiens ne sont 
plus des cercles ; ils 
sont'des ellipses égales 
EPE'P' (fig. 24), ayant 
toutes l’axe des pôles 
PP' pour petit axe. Les 
verticales, aux divers points A, A', do la surface, sont encore 
les normales AZ, A'Z'; mais ces normales ne vont plus se ren­
contrer en un même point. Lalatitude d’un point A, ou l’angle 
que la verticale AZ fait avec le plan de l’équateur EE' (n° 70), 
est toujours égale à la hauteur du pôle au-dessus de l’horizon 
(n° 71); mais elle ne se mesure plus par l’arc AE, qui est un 
arc elliptique. Par suite, lorsque l’on considère un arc AA' du
méridien, et que l’on construit les normales A Z, A'Z', corres- 

cosm. g. 5
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pondant à ses extrémités, l’angle C de ces deux verticales, 
différence des angles que chacune d’elles fait avec le plan de 
l’équateur, est l’angle que nous avons évalué astronomique- 
mentsous lenom de différence des latitudes(n°80). Si l'arc AA* 
est suffisamment petit, ce qui a toujours lieu dans les opéra­
tions de cette nature, les deux longueurs AC, A'C, sont à très- 
peu près égales; et l’arc elliptique AA' se confond sensible­
ment avec un arc de cercle qui aurait C pour centre et CA 
pour rayon. En conséquence, ce qu’il nous faut appeler main­
tenant arc d’un degré sur un méridien elliptique, et ce que 
nous avons réellement mesuré comme tel (n° 81), c’est un 
arc AA', tel que les verticales menées à ses extrémités forment 
un angle d’un degré, ou, ce qui revient au même, un arc tel 
que la différence des latitudes extrêmes est 1°.

Remarquons d’ailleurs avec soin, que toutes ces généralisa­
tions et leurs conséquences sont indépendantes de la forme 
de la courbe méridienne ; elles conviennent à une courbe 
quelconque, comme à une ellipse.

84. V érification de cette hypothèse. — Cela posé, on peut 
apprécier la courbure d’une courbe, en scs différents points, 
à l’aide de la longueur de l’arc intercepté entre deux normales 
extrêmes, faisant un angle constant, mais extrêmement petit : 
car plus l’arc AA' correspondant à l’angle d’une seconde sera

grand, plus sera grand 
le chemin que l’obser­
vateur aura à faire 
pour que son horizon 
s’incline d’une seconde; 
et moins la courbure 
sera prononcée, moins 
l’arc différera d’une li­
gne droite. Si nous ap­
pliquons ce moyen de 
comparaison à l’el- 

Fig. 25. lipse EPE'P1 (flg. 25),
dont la courbure diminue évidemment lorsqu’on va de E en P, 
nous reconnaîtrons aisément qu’un arc AA' d’un degré, pris



vers le point E, est plus petit qu’un arc BB' d’un degré, pris 
vers le point P; c’est-à-dire, que les degrés du méridien ellipti­
que vont en augmentant de E en P. Or, c’est là précisément le 
fait que démontre la mesure directe du méridien : nous de­
vons donc admettre que la courbe méridienne est, comme notre 
ellipse, aplatie aux pôles et renflée à l’équateur.

Ce qui précède nesuflit pas, sans doute, pour nous donner 
le droit de conclure que le méridien terrestre est une ellipse. 
Mais la Géométrie analytique permet de résoudre affirmative­
ment la question, comme on peut le voir dans la note vm, à la 
fin du volume.

Ainsi la terre peut, sans erreur sensible, être considérée comme 
un ellipsoïde de révolution, aplati aux pôles et renflé à l’équateur.

8t>. Erreur commise par Bernardin de Saint-P ierre. — Les 
conséquences que l’on tire de la mesure des degrés du méri­
dien, à diverses latitudes, sont mathématiquement inattaqua­
bles : cependant elles n’ont pas été adoptées unanimement, 
dès qu’elles ont été formulées. Bernardin de Saint-Pierre, par 
exemple, arrivait, par un raisonnement curieux, à une con­
clusion diamétralement opposée. Le plus long degré, disait-il, 
appartient à la plus grande circonférence, puisqu’il en est tou­
jours la 360me partie; mais la plus grande circonférence a le 
plus grand rayon : par conséquent, le rayon des pôles, cor­
respondant au plus long degré, est plus grand que le rayon de 
l’équateur qui correspond au plus petit : la terre est donc un 
ellipsoïde renflé aux pôles et aplati à l’équateur. Ce raisonne­
ment, spécieux pour les personnes qui ne sont pas familiari­
sées avec les propriétés de l’ellipse, ne pouvait en imposer aux 
géomètres; car il est fondé sur une erreur que la figure pré­
cédente fait comprendre aisément : Bernardin de Saint-Pierre 
croyait que, dans l’ellipsoïde, les normales se rencontrent au 
centre, comme dans la sphère. Or cela est faux : les arcs d’un 
degré, comptés sur le méridien, peuvent bien être considérés 
comme des arcs de cercle ; mais leurs centres C, D, sont fort 
distincts du centre O de l'ellipse : leurs rayons CA, DB, sont 
donc très-éloignés de pouvoir se confondre avec les rayons 
OA, OB, qui partent du centre de la courbe.

CHAR. II.  — FIGURE DE LA TERRE (2° APPROXIMATION). 07
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OG. Rayon de la terre. — Les axes de l’eîiipse méridienne, 
dont nous donnerons plus loin les valeurs en nombres, étant 
déterminés par le calcul (voir note vin), la Géométrie analy­
tique permetde calculerfacilementles coordonnées rectilignes 
d’un point quelconque dont on donne la latitude, et par 
suite le rayoq OA de la terre en ce point. Ce rayon va évidem­
ment en diminuant de l’équateur au pôle, tandis qu’au con­
traire le rayon de courbure va croissant. Quand on parle du 
rayon de la terre, il s’agit du rayon moyen. Cependant, dans 
le langage astronomique, le rayon de la terre est le demi- 
grand axe de l’ellipse méridienne, c’est-à-dire, le rayon de 
l’équateur.

07. Aplatissement. — On nomme aplatissement, le rapport 

------- , c’est-à-dire le rapport delà différence des axes au grar.d

axe. Nous verrons tout à l’heure que ce rapport est égal à -  -299, l o
avec une incertitude de 4,66 au dénominateur. Ainsi la figure 
de la terre ne diffère pas beaucoup de celle d’une sphère ; 
car, le grand axe étant représenté par une longueur de 299 
mètres, le petit le serait par une longeur de 298 mètres. 
Nous pourrons, en conséquence, continuer à la considé­
rer, dans le plus grand nombre des cas, comme une sphère 
parfaite : c'est ce que nous ferons, en particulier, lorsqu’il 
s’agira de la construction des globes et des cartes géographi­
ques.

y  II. —  DlLTZNSIONS D2 LA T 2 n r.c .‘

00. Mesure de la terre chez les anciens. — La question de 
la forme de la terre n’a été soulevée qu’à la fin du dix-sep­
tième siècle par Huyghens et Newton; avant eux, la terre était 
considérée comme une sphère. Mais les anciens ont cherché 
à déterminer sa grandeur, ses dimensions ; et voici, d après les 
recherches de M. Chasles, les travaux qui ont été exécutés par 
eux sur ce sujet.

Aristote (330 ans avant J.-C.) n'indique aucun procédé de 
mesure; il dit seulement que ceux qui s’efforcent de conjec-



turer la grandeur de la terre ne lui donnent guère que 
400000 stades de circonférence. Nous ne connaissons pas la 
valeur du stade.

Eratosthène (276 ans avant J.-C.) avait remarqué qu’à Syène, 
le jour du solstice d’été, à midi, les puits étaient éclairés 
jusqu’au fond, et qu’un style vertical ne portait pas d’ombre : 
le soleil passait donc, en ce moment, au zénith de celte ville. 
A Alexandrie, au contraire, il voyait, le même jour, le soleil 
à une distance zénithale de 7° 12'. Il en concluait, en suppo­
sant le soleil infiniment éloigné, que la différence des lati­
tudes des deux villes était de 7° 12'; puis, admettant qu’elles 
se trouvaient sous le même méridien, l’une en s et l’autre 
en a (flg. 26), bien qu’en fait leurs longitudes différassent
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Fig. 26.

de près de 3°, il prenait ces 7° 12' pour mêsure de l’arc du 
méridien as compris entre elles. Or la distance de Syène à 
Alexandrie était estimée 5000 stades. Il en concluait aisément 
que le degré valait 694 stades, et la circonférence de la 
terre 250000 stades. En nombres ronds, il fit le degré égal à 
700 stades, et la circonférence du globe égale à 252000 
stades.

Posidonius (106 ans avant J.-C.) remarqua que la belle 
étoile australe Canopus ne paraissait à Rhodes qu’à l’horizon, 
sans s’élever au-dessus; tandis qu’à Alexandrie, au moment 
de son passage au méridien, elle était à 7° 30' au-dessus de
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l’horizon : c’était une preuve que la différence des latitudes 
des deux villes était de 5° 30'. Comme il les supposait sous'le 
même méridien, l’une en Retl'autre en A (fig. 27), il en résul- 

p • tait que cette diffé­
rence était la me­
sure de l’arc Alt. 
D’ailleurs, la dis­
tance de Rhodes à 
Alexandrie était es­
timée égale à 3000 
stades : par suite le 
degré valait(!66 sta­
des, et la cireonfé- 

27. ronce de la terra
210000 stades.

Ptolémée (123 ans après J.-C ) a employé un moyen moins 
inexact, qui ne suppose pas les deux lieux sous le môme méri­

dien. Soient À et B ces deux 
lieux (flg. 28), PAP' et PRP1 
leurs méridiens respectifs, et 
AB l’arc de grand cercle qui 
les joint : PA et PB sont les 
compléments de leurs latitu­
des, et l’angle PAB est l’incli­
naison de l’arc AB sur le mé­
ridien du point A. Ces trois 
éléments du triangle sphéri­
que APB étant supposés con­
nus, l’analyse moderne per-28.

rnetde calculer le nombre de degrés du côté AB.
Ptolémée ne dit pas comment il a déterminé la direction 

du point A au point B, et la valeur de l ’angle A. Il dit seule­
ment qu’il a faille calcul, qu’il a mesuré l’arc AB en degrés et 
en longueur, et que le degré est de 5000 stades.

Au neuvième siècle, le calife Almamoun fit mesurer un de­
gré dans les plaines de Singiar : ses mathématiciens mar­
chèrent les uns vers le nord, les autres vers le sud, sur



un même méridien, en mesurant la distance parcourue, 
et en calculant la différence de latitude par la hauteur mé­
ridienne du soleil. Ils arrivèrent au même résultat que Ptolé- 
mée. Pour en apprécier l’exactitude, il faudrait connaître la 
valeur du stade.

8 9 . Mesure de la terre ciiez les modernes. — En 1350, 
Fernel, médecin et astronome, mesura l’arc du méridien 
compris entre Paris et Amiens, et trouva que le degré valait 
57070 toises. Son procédé consistait à compter le nombre des 
tours de roue de sa voiture, depuis Paris jusqu’au point où, 
par l’observation de la hauteur méridienne du soleil, il jugea 
qu’il s’était avancé d’un degré vers le nord.

En 1616, un géomètre hollandais, Snellius, appliqua le pre­
mier la trigonométrie à cette question, et trouva le degré égal 
à 55021 toises, valeur beaucoup trop faible. De son côté, 
.Xorwood, en Angleterre, trouva, par des procédés analogues, 
57424 toises, valeur beaucoup trop forte.

C’est à Picard que l’on doit la première mesure réellement 
mathématique de la terre. Cet illustre géomètre employa dans 
ses opérations, en 1669, des méthodes nouvelles, inventées 
par lui, et qui sont le fondement de celles que l’on emploie 
aujourd’hui. Il mesura avec des précautions infinies la dis­
tance de Malvoisine à Amiens, et trouva le degré égal à 
57060 toises. C’est cette mesure qui servit à Newton pour 
calculer l’attraction qui retient la lune dans son orbite au­
tour de la terre, et pour découvrir le grand principe de la 
gravitation universelle.

On s’occupa, quelques années après, de mesurer tout l’arc 
du méridien qui traverse la France. J. Dominique Cassini., en 
1683, commença seul ; puis, en 1700, il s’adjoignit son lits 
Jacques Cassini, et son neveu Philippe Maraldi, et poussa le 
tiavail jusqu à la frontière méridionale de France: il trouva le 
degré égal à 57097 toises, à la latitude de 45°. Puis, en 1718, 
Jacques Cassini, Dominique DIaruldi, neveu de Philippe, et 
de La Dire le tils, continuèrent dans le Nord, d’Amiens à Dun­
kerque, la mesure commencée par Picard, et trouvèrent que 
le degré valait 569G0 toises à la latitude de 50°. On voit que
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ces deux mesures conduisent à la conséquence de Vallongement 
de la terre dans le sens des pôles. Newton et Huyghens avaient 
cependant formulé auparavant l’opinion opposée, fondée sui­
des considérations mécaniques.

Il devenait donc intéressant de mesurer les degrés du méri­
dien dans des régions assez éloignées en latitude, pour que 
les erreurs des observations fussent moindres que la différence 
qu’on cherchait. C’est dans ce but que Godin, Bouguer et 
La Condamine partirent pour le Pérou en 1736; tandis que 
Mauperluis, Clairaut, Camus, Lemonnier et Outhier allèrent 
en Laponie. Ce sont les mesures de ces académiciens, et celle 
de Picard pour la France, que nous avons indiquées au n° 82; 
elles donnèrent raison à Newton et à Huyghens contre Cassini.

Vers le même temps, en 1739, Cassini de Thury et Lacaille 
recommencèrent les mesures exécutées en France. Ce travail 
confirma la mesure donnée par Picard, fit découvrir les 
erreurs de D. et de J. Cassini, et donna une mesure exacte du 
méridien. Ce fut alors que Cassini de Thury construisit sa 
belle carte de France, en couvrant le pays d’un vaste réseau 
de triangles qui lui servirent à déterminer les positions des 
points principaux. Il prolongea ensuite en Allemagne, jusqu’à 
Vienne, la perpendiculaire au méridien de Paris. D’autres 
savants exécutèrent dans leur pays des travaux sembla­
bles. Plus tard, on voulut relier les deux observatoires de 
Greenwich et de Paris, pour fixer leur position relative. A cet 
effet, on mesura une première base, en 178i, dans la plaine 
de Hounslowlieat, au sud-ouest de Londres ; et, en 1787, on 
commença la chaîne des triangles qui devaient rattacher 
Londres à Douvres ; puis on relia celte dernière ville à la mé­
ridienne de France.

90. Nouveau système des poids et mesures. — Une nouvelle 
série de ces travaux difficiles fut entreprise, après la révo­
lution française, dans un tout autre but. « On ne peut voir, dit 
« le marquis de Laplace (1), le nombre prodigieux de mesures 
« en usage, non-seulement chez les différents peuples, mais 
« dans la même nation ; leurs divisions bizarres et ineom-

(1) Exposition du système du monde, liv. I, chap. xiv.



« modes pour les calculs ; la difficulté de les connaître et de 
« les comparer ; enfin, l’embarras et les fraudes qui en résul- 
a tentdans le commerce, sans regarder comme l’un des plus 
a grands services que les gouvernements puissent rendre à la 
« société l’adoption d’un système de mesures dont les divi- 
« sions uniformes se prêtent le plus facilement au calcul, et 
« qui dérivent, de la manière la moins arbitraire, d’une me- 
« sure fondamentale indiquée par la nature elle-même. Un 
« peuple qui se donnerait un semblable système réunirait à 
« l’avantage d’en recueillir les premiers fruits celui de voir son 
« exemple suivi par les autres peuples, dont il deviendrait le 
« bienfaiteur ; car l’empire lent mais irrésistible de la raison 
« l’emporte, à la longue, sur les jalousies nationales, et sur- 
« montetouslesobstaclesqui s’opposent au bien généralement 
« senti. Tels furent les motifs qui déterminèrent l’Assemblée 
« constituante à charger de cet important projet l’Académie 
« des sciences. L’identité du calcul décimal et de celui des 
« nombres entiers ne laisse aucun doute sur les avantages de 
« la division de toutes les espèces de mesures en parties déci- 
« males : il suffit, pour s’en convaincre, de comparer les diffi- 
« cultés des multiplications et des divisions complexes avec 
« la facilité des mêmes opérations sur les nombres entiers, fa- 
ct cilité qui devient plus grande encore au moyen des loga- 
c rithmes, dont on peut rendre, par des instruments simples 
« et peu coûteux, l’usage extrêmement populaire... On ne ba­
il lança donc point à adopter la division décimale ; et, pour 
« mettre de l’uniformité dans le système entier des mesures, 
« on résolut de les dériver toutes d’une même mesure linéaire 
« et de ses divisions décimales. La question fut ainsi réduite 
« au choix de cette mesure universelle it laquelle on donna le 
a nom de métré. »

91. Longueur du mètre.— Guidés parla pensée deprcndre 
la nouvelle unité dans la nature, afin de la rendre invariable, 
et pour qu’on pût la retrouver si elle venait à se perdre, les 
commissaires (1) chargés du travail convinrent de choisir une 
partie aliquote de la circonférence de la terre. Il fallait, pour

(1) C’oiaient B o r d a , L a g r a n g e , L a p la c e , M o n g e  et C ondorce t.
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cela, connaître la longueur exacte du méridien. On pouvait la 
déduire de celle de l ’arc qui traverse la France, de Dunkerque 
aux Pyrénées, et qui fut mesurée en 1740 par Lacaille et Cas- 
sini de Thury. « Mais une nouvelle mesure d’un arc plus grand 
« encore, faite avec des moyens plus exacts, devant inspirer, 
« en faveur du nouveau système des poids et mesures, un 
« intérêt propre à le répandre, on résolut de mesurer l’arc 
« du méridien terrestre compris entre Dunkerque et Barce - 
« lone (1). » Cette grande opération fut confiée à Dclambre et 
fi Méchain, et menée par eux à bonne fin, malgré les périls sus­
cités par la tourmente politique. Ils trouvèrent que le quart du 
méridien était égal à 5130740 toises. Ce résultatfut adopté par 
ie Corps législatif, le 4 messidor an YII (‘22 juin 1799). On a 
pris la dix-millionième partie de cette longueur, ou 0',513074, 
pour valeur du mètre. Le mètre légal vaut donc0'3," 0J'° 11^296. 
On trouve clans tous les traités d’arithmétique une exposi­
tion du nouveau système de mesures, et l’on voit comment 
chacune d’elles dérive du mètre. Il nous suffit ici d’avoir 
indiqué les travaux qui ont servi à le déterminer. Le gou­
vernement français avait invité les puissances étrangères à  
prendre part à ces travaux ; et plusieurs d’entre elles ont 
envoyé à Paris des savants distingués qui, réunis aux commis­
saires de l’Institut, ont déterminé les unités fondamentales de 
poids et de longueur. « En sorte que, dit encore Laplace, la 
« fixation de ces unités doit être regardée comme un ouvrage 
« commun aux savants qui y ont concouru et aux peuples 
« qu’ils ont représentés. Il est donc permis d’espérer qu’un 
« jour ce système, qui réduit toutes les mesures et leurs cal- 
« culs à l’échelle et aux opérations les plus simples de l’a- 
« rithmélique décimale, sera aussi généralement adopté que 
« le système de numération dont il est le complément. »

92. Dimensions du sphéroïde terrestre. — On était arrivé à 
la valeur du mètre légal, en combinant l’arc elliptique mesuré 
parDelambre et Méchain, entre Montjouy et Dunkerque, avec

V aplatissement supposé égal à — Mais cette évaluation ne 334
(t) Laplace, E x p o s itio n  d u  sy stèm e d u  M o n d e.



reproduit pas tout à fait la dix-millionième partie du quart du 
méridien terrestre ; elle est un peu trop petite, ce qui tient aux 
irrégularités locales de l ’arc et à l’aplatissement employé. 
D’autres mesures ent été exécutées dans ce siècle: MM.Biot et 
Arago ont prolongé l’arc de France jusqu’à la petite île de 
Fomentera, l’une des Baléares ; d’autres savants ont exécuté 
des triangulations semblables en Angleterre, en Russie, en 
Allemagne, aux Indes. De tous ces travaux, l’astronome alle­
mand Bessel a conclu, en 1811, les éléments les plus exacts 
que nous possédions aujourd’hui, pour la forme et les di­
mensions du sphéroïde terrestre. Le quart du méridien vaut 
5131180 toises, avec une incertitude de 256 toises en plus ou 
en moins. On voit que cette valeur surpasse celle de la coin- 
mi-sion de 440 toises, ou de 380160 lignes; le mètre légal est 
donc trop faible d’environ 0\Ü38. Mais ce n’est pas une raison 
pour revenir sur la délerminalion de cet élément, comme 
type d’unité linéaire désormais adopté.

Le rayon de l ’équateur a =  3272077 toises=637739S mètres.
Le demi-axe polaire b = 3261139 toises=G35G080 mètres.

. ,, « —  4 1
Par suite 1 aplatissement—-—■ =  ——

et la différence entre les deux demi-axes =  10038*= 21318*", 
ce qui correspond à 5 lieues environ.

Le quart du méridien vaut....................  10000830“.
Le quart de l’équateur vaut....................  10017591“.
La circonférence du méridien vaut donc. 40003424”.
Et la circonférence de l’équateur vaut.. 40070376“.

Par suite, la surface totale de la terre vaut 509950820 kilomè­
tres carrés, et son volume vaut 1082841000000 kilomètres 
cubes.

Tels sont les éléments du sphéroïde terrestre. Lorsqu’il ne 
o’agit pas de calculs d’une grande précision, on prend pour la 
circonférence de la terre 40000 kilomètres, et pour son rayon 
moyen G3GG kilomètres.
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CHAPITRE III

CARTES GÉOGRAPHIQUES.

P r o je c t io n s  o r t l io g r a p l i iq n e  e t  s t è r é o g r a p h i q u e .  —  M a p q e m o n d e .  —  S y s ­

t è m e  d e  d é v e lo p p e m e n t  e n  u s a g e  d a n s  l a  c o n s t r u c t io n  d e  l a  c a r t e  de 
F r a n c e .

95. Diverses sortes de cartes géographiques. — Les cartes 
géographiques sont des dessins exécutés sur un plan, et des­
tinés à représenter une partie quelconque de la surface de la 
terre. Or, cette surface, étant sphérique, n’est pas développable, 
c’est-à-dire ne peut pas s’étendre sur un plan sans déchirure 
ni duplicature. La configuration des continents, des pays, les 
rapports des distances des différents lieux, sont donc néces­
sairement altérés sur les cartes, quel que soit le mode de re­
présentation que l’on adopte. Nous allons exposer succincte­
ment les principales méthodes que l’on emploie pour la cons­
truction d’une carte géographique; et nous ferons ressortir 
les avantages et les inconvénients de chacune d’elles.

La position d’un lieu à la surface de la terre étant parfaite­
ment déterminée par sa longitude et sa latitude, il suffira, pour 
le placer sur la carte, de savoir y tracer son méridien et son 
parallèle; l’intersection de ces deux lignes donnera la position 
cherchée. La question se ramène donc tout entière à construire 
le réseau des méridiens et des parallèles. Le mode de cons­
truction varie, suivant les cas : s’il s’agit d’une mappemonde, 
destinée à représenter un hémisphère entier, on emploie les 
projections orthographiques ou stéréographiques; s’il s’agit d’une 
carte particulière, représentant une contrée, un continent, on 
emploie les développements coniques, ou les méthodes inventées 
par Flamsteed, Mercator, etc.

§ 1. —  C onstruction  des m appem ondes dans le  systèm e o rth o g r a ph iq u e .

94. P rojections orthographiques. — On appelle projection 
orthographique d’un point de la surface terrestre le pied de



la perpendiculaire abaissée de ce point sur le plan d’un grand 
cercle ; ce plan est le plan deprojection. La mappemonde ré­
sulte des projections des différents points d’un hémisphère 
sur le grand cercle qui lui sert de hase. On prend ordinaire­
ment pour plan de projection celui de l’équateur, ou celui 
d’un méridien quelconque. Examinons ce que deviennent les 
méridiens et les parallèles dans ces deux cas.

0 3 .  —  P remier c a s  : projection orthographique s u r  l’équa- 
teur. — Si l’on étudie la figure 29, dans laquelle l’équateur est 
ECE', et le pôle boréal 
est P, on voit facilement, 
d’après les premiers prin­
cipes de la géométrie de 
la sphère : 1° que le pôle P 
se projette au centre T de 
l’équateur ; 2° que tout 
méridien PCP', étant per­
pendiculaire au plan de 
projection, se projette 
tout entier sur le rayon 
TC ; 3° que l’angle de deux 
méridiens quelconques PE 
et PC est mesuré par l'angle de leurs projections TE et TC ; 
•4° que tout parallèle IR se projette sur un cercle AB, de même 
rayon, concentrique à l’équateur ; de sorte que le point M, 
situé sur le méridien PC et sur le parallèle IK, se projette sur 
l’intersection du rayon TC et du cercle AB au points. De plus, 
si l’arc EC=EI, et si le point A est la projection du point Isur 
l’équateur, CA sera aussi perpendiculaire sur ET : car, en fai­
sant tourner ECE' autour de EE’ comme charnière, ce cercle 
vient se confondre avec EIE'; et le point C tombant en I, CA 
coïncide avec IA.

06. Construction d e  la carte. — On déduit de là la cons­
truction suivante, pour la carte de l’hémisphère boréal (iig. 30). 
On trace un cercle EDE'D' qui représente l’équateur, et on le 
partage en degrés, de part et d’autre d’un diamètre EE' qui 
représente le premier méridien. Le point T est la projection

CHAPITRE I II . —  CARTES GÉOGRAPHIQUES. 77



du pôle, et les rayons TB, TP, etc..représentent les méridiens 
inclinés les nns sur les autres de 30°. Les longitudes orien­
tales sont comptées sur l’équateur dans le sens EFG, les lon­
gitudes occidentales dans le sens ECD. On joint CG, ce qui 
donnele point A et le rayon TA du parallèle situé à la latitude

de 60°:on construit de 
même le parallèle TV 
dont la latitude est 30°, 
et tout autre parallèle 
que l’on désire : les la­
titudes sont inscrites sur 
le rayon TE de 0° à 90°. 
Le réseau étant ainsi 
obtenu, onplace chaque 
lieu à l’intersection de 
son méridien et de son 
parallèle; par exemple, 
le lieu dont la longitude 

orientale =  30°, et dont la latitude =  60°, est au point L.
La carte céleste, qui représente chaque hémisphère, est 

souvent représentée suivant ce système.
9 7 . Deuxième cas : projection orthographique sur un méri­

dien. — Le plan de projection est l’un des méridiens qui sépa­
rent le nouveau monde de l’ancien. Soit PEP (fig. 29) ce mé­
ridien : 1° l’axe PP', étant dans le plan du méridien, est lui- 
même sa projection ; 2° tout parallèle 1H étant, ainsi que 
l’équateur ECE', perpendiculaire à l’axe et par suite au méri­
dien choisi, se projette tout entier sur son diamètre ; 3° le 
méridien perpendiculaire au plan de projection a pour pro­
jection l’axe PP' lui-même ; mais tout autre méridien PCP’, 
étant oblique au plan de projection, se projette suivant une 
ellipse dont le grand axe est PP’, et dont le petit axe a pour 
sommet le point A, projection du point C ; ce point A, d’ail­
leurs, estaussi la projection du point I sur EE', si l’arc EI=EC.

9 8 . Construction de la carte. — De là résulte la construc­
tion suivante. On trace un cercle PEP'E', qui représente le 
méridien choisi pour plan de projection (fig. 31) ; et on le di­
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vise en degrés, de part et d’autre du diamètre EE' qui repré­
sente l’équateur. Piy est l’axe des pôles ; les latitudes boréales 
ou australes sont inscrites sur le méridien PEP'E', à partir 
de EE'; les cordes G1I et G’U', 1S et l'E', perpendiculaires à 
l ’axe,repré sentent ies pa­
rallèles situés aux latitu­
des de 30°, de G0°. Si l’on 
abaisse la perpendiculaire 
IA sur EE', le point A est 
le sommet de l’ellipse 
PAP', projection du méri­
dien qui fait avec le mé­
ridien primitif un angle 
de 60°. On construit cette 
ellipse par les procédés 
ordinaires (1); et si PEP 
est le premier méridien, 
on marque 60° en A. On 
construit de môme les di­
vers méridiens; et les longitudes sont marquées sur l’équa­
teur EE'.

Le réseau étant construit, on place un lieu quelconque à 
l ’intersection de son méridien et de son parallèle.

Si le premier méridien est, par exemple, PDP', on marque 
9° en D pour l’origine des longitudes, 30° en A, etc.

99. I nconvénients des p r o j e c t i o n s  orthographiques : remar­
ques. — Le système des projections orthographiques présente 
cet avantage, que les parties centrales delà carte sont bien lare- 
présentation des lieux correspondants de la terre; mais il offre 
cet inconvénient, que les parties voisines des bords.sont consi­
dérablement rétrécies dans le sens des rayons, tandis qu’elles 
conservent leurs dimensions dans le sens de la circonférence.

(1) On peut construire cette ellipse par points. Car si, sur IK comme dia- 
mfetre, ou construit un demi-cercle, qui est le rabattement du parallèle cor­
respondant autour de IK, puis que l’on pr nmo l’arc I M  égal à l’angle que le 
méridien cherché fait avec le plan de projection (ce qui se fait en menant SM 
parallèle à TI), le point M appartient au méridien eu question, et la pro­
jection m de ce point appartient à l’ellipse de projection.
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C’est sous la forme d’une carte orthographique qu’apparaît 
à nos yeux le disque d’une planète, du soleil, de la lune; car 
les rayons visuels, qui vont aux différents points de la partie 
visible de l’astre, peuvent être considérés comme parallèles, 
et perpendiculaires au plan du grand cercle qui en forme le 
contour apparent.

On pourrait prendre pour plan de projection un grand 
cercle quelconque de la terre ; alors le pôle se projetterait en 
un point quelconque de ce plan; les parallèles se projette­
raient suivant des ellipses, ainsi que les méridiens : l’un de 
ces derniers seulement, perpendiculaire au plan de projec­
tion, aurait pour projection une ligne droite; mais tous pas­
seraient par la projection du pôle.

§  II. —  CONSTRUCTION DES MAPPEMONDE DANS LE SYSTÈME STÉRÉOGr.APIIlQDE.

100. Projections stéréograpiitooes. — La projection stéréo- 
graphique d’un point de la surface de la terre est la perspec­
tive (1) de ce point sur le plan d’un grand cercle, le point de

(1) La perspective d’un point A (fig. 32', sur un tableau TR, pour l’œil placé
eu V, est le point d’intersection a de le 
droite VA et du tableau ; V est le point 
de vue. La perspective d’une ligure es: 
le lieu des perspectives de se3 différent;, 
points. 11 résulte de là : lo que la per­
spective d’une droite AB est une autre 
droite ab, intersection du tableau et du 
plan VAB ; 2° que la perspective d’une 
figure plane, dont le plan passe par le 
point de vue, est aussi une droite (in­
tersection des deux plans) ; 3° que la 

perspective d'une courbe est généralement une courbe, et que la perspective
d’une tangente en un point de la 
courbe est une tangente à la per­
spective au point correspondant. 
Pour démontrer cette dernière 
propriété, soient (fig. 33) AB une 
courbe, CT sa tangente en C, ab 
la perspective de AB et et la tan­
gente à cette courbe en c. La corde 
CA a pour perspective la corde ca. 
O r, lorsque ia première corde 

tourue autour du point C, la deuxième tourne autour du point c, sans



vue étant à l’extrémité du rayon perpendiculaire à ce plan. 
Pour représenter, dans ce système, l’hémisphère AGB, on 
prend pour tableau le grand cercle AGB qui lui sert de base, 
et l’on place le point de vue en V dans l’hémisphère opposé 
(fig. 34). Tout point M de l'hé­
misphère est représenté en m 
surle tableau. Il est évident 
que les points de l’arc ACB, 
dont le plan contient le point 
de vue Y, se projettent tous 
sur le diamètre AOB.

On démontre, en géomé­
trie, que les sections faites, 
dans un cône circulaire obli­
que, par des plans parallèles 
à la base, sont des cercles (1).

10 i .  P r i n c i p e  d e s  p r o j e c t i o n s  s t é r é o g r a p i i i q u e s . — La con­
struction des cartes, dans ce système, repose sur des principes 
remarquables, dont nous ne donnerons ici que l’énoncé, 
mais dont on trouvera la démonstration dans la note ix, à la 
fin du volume.

P r i n c i p e  I. Tout cercle de la sphère a pour projection stéréo- 
graphique un cercle. Cette projection devient une ligne droite, 
quand le plan du cercle passe par le point de vue.

P r i n c i p e  II. Si deux lignes courbes, tracées sur l’hémisphère,
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F ig .  3 4 .

c e s s e r  d ’ê l r e  l a  p e r s p e c t iv e  d e  l ’a n t r e  ; d ’a i l l e u r s  e l le s  d e v i e n n e n t ,  d a n s  ce  
m o u v e m e n t ,  t a n g e n t e s  e n  m ê m e  t e m p s  ; ,

d o n c  d  e s t  l a  p e r s p e c t iv e  d e  C T . C . Q . F . D .

f l )  S o i t  S A B  u n  c ô n e  c i r c u l a i r e  o b l iq u e  

(fig . 351 ; jo ig n o n s  S O , e t  m e n o n s  le s  r a y o n s  

O A , O C , e t  l e s  g é n é r a t r i c e s  S A , S C . L e  

p l a n  A 'B 'C ’ , p a r a l l è l e  à  l a  b a s e  A B C , c o u p e  
le s  p l a n s  S A O , S C O , s u i v a n t  d e s  d r o i t e s  

O ’A ', O 'C ',  r e s p e c t iv e m e n t  p a r a l l è l e s  à  A O  
e t  A O C  ; e t  le s  t r i a n g le s  s e m b la b le s  d o n -

« A - O C ,

d o n c  O A ' — O C '.  D o n c  le s  p o in t s  A ',C ' 

s o n t  s u r  u n  c e rc le  d o n t  O ' e s t  l e  c e n t r e .  C . Q .

COSil. G. G
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se coupent sous un certain angle, leurs projections stêrêogra- 
phiques se coupent sous le même angle : c’est-à-dire, que l’an­
gle des tangentes aux deux courbes ne change pas en pro­
jection.

11 en résulte que les figures infiniment petites, tracées sur la 
sphère, se projettent suivant des figures semblables.

102. C o n s t r u c t i o n  s t é r é o g r a p h i q u e  d ’u n e  m a p p e m o n d e . —  

L'application de ces principes àla construction d’une mappe­
monde est très-simple. On choisit (fig. 36) pour plan du ta-

F i g .  3 6 .

bleau un méridien NESO, et l’on place le point de vue à 
Pcxlrémité du rayon de l’équateur perpendiculaire à ce méri­
dien. L’équateur, contenant le point de vue, se projette sui­
vant le diamètre EO : l’axe terrestre est NS. On partage le mé­



ridien en degrés, de part et d’autre de l’équateur : ce sont les 
degrés de latitude.

Pour construire un parallèle quelconque, celui dont la lati­
tude est 60°, par exemple, en mène au point D (marqué 60°) 
une tangente au méridien, jusqu’à la rencontre de l’axe en G ; 
puis, du point G comme centre, avec le rayon GD, on décrit 
l’arc DD', qui est le parallèle cherché. Car, le parallèle étant 
un demi-cercle, sa projection est un arc de cercle (1er théo­
rème) ; mais ce cercle passant aux points D et D' qui sont dans 
le tableau, sa projection doit y passer aussi : le centre de la 
projection se trouve donc sur NS. D’ailleurs, le parallèle étant 
perpendiculaire au méridien, les projections des deux cercles 
doivent se couper à angle droit, au point D (2e théorème) : 
donc la tangente à la projection du parallèle doit être le rayon 
CD, perpendiculaire à DG ; donc le centre de cette projection 
doit être sur DG, et par suite en G.

Pour construire un méridien quelconque, par exemple, 
celui qui fait un angle de 30° avec le tableau vers la gauche, 
on prend vers la droite un arc SK double de l’angle donné 
(ici G0°) et l’on mène la corde NK : cette corde rencontre en 
L le diamètre E0 ; on décrit du point L comme centre, avec le 
rayon LN, l’arc NIS qui est le méridien cherché. Car la pro­
jection circulaire du méridien doit passer, comme le méri­
dien lui-même, par les points N, S, qui sont dans le tableau : 
son centre est donc sur EO. Déplus, cette projection doit faire 
avec le méridien NOS, au point N, le même angle de 30° que 
les méridiens font dans l’espace (2° théorème) : donc sa tan­
gente est la corde NR qui sous-tend l’arc double ; donc sou 
centre est sur la corde NK perpendiculaire à Nil, qui déter­
mine l’arc égal SK ; il est donc en L.

On construit ainsi le réseau des parallèles et des méridiens; 
on y place ensuite chaque lieu d’après sa longitude et sa la­
titude.

La figure 3G est construite dans l’hypothèse où le tableau 
est le premier méridien : s’il en est autrement, on construit 
d abord, par la méthode précédente, ce premier méridien dont 
on connaît la longitude par rapport à celui qui sert de tableau,
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et l’on marque 0° au point où il coupe l’équateur. Les longi­
tudes d’ailleurs se marquent sur l’équateur.

105. Inconvénients de ce système de projection; remarques. 
— C’est ce système que l’on adopte ordinairement dans les 
atlas. 11 présente un inconvénient contraire à celui du système 
orthographique. Car (fig. 37) un élément PQ, qui se projette en 
pq vers le centre du tableau, est réduit à peu près à moitié, à

cause de larelation approchée

pq_V /3 ___ l
PQ—  ÿp= 2;

tandis qu’un élément BS, voi­
sin du bord, se projette sui­
vant une ligne Bs qui lui est 
à peu près égale, parce que, 
dans le triangle BSs, les deux 
angles S et s sont sensible­
ment égaux à 45°.

11 est facile de reconnaître 
d’après quel système est construite une mappemonde. Car, 
dans le système orthographique, les méridiens ou les paral­
lèles sont représentés par des lignes droites ; tandis que, 
dans le système stéréographique, ils sont, les uns comme les 
autres, représentés par des cercles, si l’on adopte pour ta^ 
blcau le plan d’un méridien.

104. Autres modes de projection stéréograpiiique. —La pro­
jection stéréographique, dont nous venons de développenla 
construction,'se nomme projection sur le méridien. Ce n’est 
pas la seule que l'on emploie dans ce système. On place quel­
quefois le point de vue à l’un des pôles pour représenter l’hé­
misphère opposé: le plan du tableau est l’équateur. Les méri­
diens sont représentés par des rayons de ce grand cercle, 
comme aans la projection orthographique (n° 96) ; car leurs 
plans contiennent tous le point de vue. Les parallèles sont de 
même projetés suivant des cercles concentriques à l’équateur; 
mais leurs rayons sont plus petits : ils sont d’ailleurs très-fa­
ciles à construire. C’est la projection polaire. C’est le mode de
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projection que nous avons adopté pour le planisphère céleste
(Bg. U ,  pl. I).

Enfin, il existe une troisième sorte de projection stéréogra- 
phique, qu’on appelle projection sur l'horizon. Le plan du ta­
bleau est l’horizon rationnel d’un lieu, de Paris, par exemple ; 
et le point de vue est à l’extrémité opposée du diamètre qui 
passe par ce lieu. Le méridien du lieu se projette suivant un 
diamètre du tableau, et les pôles en deux points de ce 
diamètre (l’un intérieur et l’autre extérieur). Les autres méri­
diens se projettent suivant des arcs de cercle passant par les 
projections des pôles, et se construisent à l’aide du théorème IL 
Les parallèles sont des cercles, que l’on peut construire à 
l’aide des principes de la Géométrie descriptive.

§  I I I .  —  C o n s t r u c t i o n  d e s  c a r t e s  p a r t i c u l i è r e s . —  D é v e l o p p e m e n t s  
CONIQUES ET CYLINDRIQUES ï CARTE DE FRANCE.

1 0 5 .  D éveloppement conique. — Lorsqu’on veut représenter 
une partie de la terre com­
prise entre deux parallè­
les et deux méridiens, pat- 
exemple, un empire, une 
province, on emploie la 
méthode des développe­
ments coniques.

Soit T la terre (fig. 38) ; 
soient MM' et NN' les deux 
parallèles, et PD P'et PD’P’ 
les deux méridiens qui li­
mitent la région qu’on 
veut représenter. Soit en 
outre AA' le parallèle 
moyen (également distant 
des deux parallèles extrê­
mes). Concevons un cône 
circonscrit à la terre le
long de ce parallèle, et soit S son sommet ; puis prolongeons 
les plans des divers parallèles et méridiens de la zone consi-
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dérée. Ces plans coupent le cône, les premiers suivant des 
cercles tels que N,N/, et les autres suivant des généra-
Irices telles que SA, SD, SD'. Or le parallèle moyen AA' est 
tout entier sur la surface du cône ; les autres parallèles MM', 
NN'..., diffèrent peu des sections correspondantesM)I\!1',N,Ni'...: 
les arcs de méridien, tels que MAN, se confondent sensible­
ment avec les parties, telles que M,AN„ des génératrices du 
cône. On peut donc supposer que la surface de la zone, dont 
on veut construire la carte, ne diffère pas trop de la portion 
de surface conique correspondante, et prendre l’une pour 
l’autre. Mais la surface conique est développable : elle peut 
s’étendre sur un plan sans déchirure ni duplicature : il sera 
donc possible d’utiliser cette propriété pour figurer la carte.

Pour cela, concevons que l’on développe le cône circonscrit 
sur le plan tangent à la sphère au point A. Comme le sommet

S est également distant de tous 
les points du cercle AA', la sur­
face du cône devient dans le dé­
veloppement (fig. 30) un secteur 
circulaire dont le centre est s, et 
le rayon sa — SA ; l’arc dad est 
le développement du parallèle 
moyen: les autres parallèles MM', 
NN', se développent suivant des 
arcs concentriques gçj, hh', dé­
crits avec les rayons sm =  SM„ 
$n =  SN,. Quant aux méridiens 

PA, PD, PD', ils sont remplacés par les génératrices sa, sd, 
sd, etc. La carte se trouve ainsi renfermée dans le trapèze 
circulaire gg'hh', dans lequel on construit autant de parallèles 
et de méridiens qu’il est nécessaire d’en avoir.

10G. Construction de la carte. — Pour tracer la carte, on 
construit d’abord un cercle auxiliaire EPE'ly (fig. 40) avec un 
rayon arbitraire; en considérant ce cercle comme un méridien 
terrestre, sur lequel PP' représente l’axe des pôles et EE' la 
trace de l’équateur, on construit les traces du parallèle moyen 
AA et des autres parallèles aux latitudes données, et on les



prolonge jusqu’à la rencontre de la tangente SA : on a ainsi 
les rayons SA, SM,, SN, des parallèles de la carte. On prend 
donc un point s pour cen­
tre (fig. 39), et on décrit 
ces parallèles.

Gela fait, on rabat sur le 
plan de la figure le cercle 
qui a pour diamètre AA 
(fig. 40), en le faisant tour­
ner autour de cediamètre ; 
et l’on porte sur ce cercle, 
à partir de A et de part et 
d’autre, des arcs AI’, égaux 
aux longitudes des méri­
diens qu’on veut obtenir, 
longitudes comptées à 
partir du méridien moyen 
SA. Alors, pour tracer 
sur la carte (fig. 39) le mé­
ridien dont la longitude 
est AI', il suffit de porter sur ad un arc ai égal en langueur à 
l’arc AI', et de joindre si.

10 7 . Développements cylindriques. —Lorsque la région que 
l’on a à représenter est voisine de l’équateur, et lorsqu’elle 
s’en écarte peu de part et d’autre, le cône peut ôtre remplacé 
par un cylindre circonscrit à la terre le long de l’équateur ; et 
la projection prend le nom de projection cylindrique. On voit 
aisément que, dans ce cas, le développement fournit un rec­
tangle, dont la base est égale à la longueur de l’arc de l’équa­
teur compris entre les méridiens extrêmes, et dont la hauteur 
est la portion de génératrice comprise entre les parallèles 
extrêmes. Les méridiens sont alors représentés par des lignes 
droites équidistantes perpendiculaires à la base, et les pa­
rallèles par d’autres lignes droites équidistantes perpendicu­
laires aux méridiens. Nous n’insistons pas sur les détails 
de la construction, qui a beaucoup d’analogie avec la précé­
dente.
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1 0 8 . Carte de France. — Le corps d’état-major, chargé de 
construire la carte de France, a employé un procédé diffé­
rent,quil’aconduit àdes résultatsd’une fidélité remarquable. 
Soient PAP' (fig. 41) le méridien moyen de France, et AA' la 
trace du parallèle moyen (celui dont la latitude est 45°) ; et con­

cevons le cône ASA' cir­
conscrit à la terre le long 
de ce parallèle. Au lieu 
de prolonger les plans 
des parallèles MM', NN', 
comme dans le dévelop­
pement conique ordi­
naire, on porte les lon­
gueurs des arcs AM, AN, 
rectifiés, sur la tangente 
SA, en AM,, AN,. Puis, 
développant le cône en un 
secteur circulaire, on 
prend, pour rayons des 
arcs concentriques, les 
longueurs SA, SM„ SN, ; 

et l’on a ainsi le système des parallèles de la carte.
Le méridien moyen est représenté par un rayon : quant 

aux autres méridiens, ce sont des lignes courbes que l’on trace 
par points de la manière suivante. Si l’on veut construire, par 
exemple, le méridien distant d’un degré du méridien moyen,

on calcule les longueurs diver­
ses de l’arc d’un degré sur les 
différents parallèles de la terre; 
et l’on transporte ces longueurs, 
sans les modifier, sur les paral­
lèles correspondantsde la carte. 
Puis on joint leurs extrémités 
par un trait continu.

1 0 9 .  Construction delà carte. 
— On obtient ainsi le réseau que représente la figure 42. Le
rayon sa a une longueur arbitraire : il représente la généra-



trice SA ou le rayon A ï de la figure précédente. On décrit 
avec ce rayon l’arc aar  qui représente le parallèle moyen AA'. 
Comme l’arc d’un degré, compté sur le méridien moyen, a 

■k ATpour longueur “ ' -, on porte cette longueur sur sa en aa', et

l’on décrit avec le rayon sa' l’arc a'a'i ; cet arc représente le 
parallèle qui est distant d’un degré du parallèle moyen; on 
construit de môme les autres parallèles. Puis on calcule de 
môme la longueur de l’arc d’un degré sur chaque parallèle de 
la sphère (elle est proportionnelle à la longueur de son rayon), 
et l’on porte les longueurs ainsi obtenues sur la carte en ab, 
a'b',a"b",... : le méridien distant d’un degré est le lieu des 
points b, b', b". Les autres méridiens se construisent de la 
môme manière.

i l O .  A vantages de ce système. — L’avantage considérable 
que présente ce dévelop­
pement, c’est que les sur­
faces ne sont pas altérées : 
elles sont les mêmes sur 
la carte et sur la sphère.
Car, si l’on considère, sur 
la sphère (fig. 43), une 
surface B'CTTC" comprise 
entre deux parallèles et 
deux méridiens assez voi­
sins pour qu'on puisse 
regarder les arcs comme 
rectilignes, cette surface
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est un trapèze dont la mesure est

face correspondante dans le développement est un trapèze 
b'c'b"c" (fig. 42), lequel, pouvant aussi être considéré comme

b'd 4- b"c"rectiligne, a pour mesure -----------  x  dd'. Or, on a pris

dd' =  B'B", et d’ailleurs Ud =  B'C', b"d’ =  B"C" : donc les 
deux aires sont égales.

Dans ce système, d’ailleurs, tes méridiens sont perpendieu-
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iaires au parallèle moyen, et à très-peu près perpendiculaires 
aux autres parallèles : c’est le but qu’on se proposait.

111. — C’est par des procédés de cette nature, que les offi­
ciers du corps d’état-major ont construit la carte de France. 
Après avoir déterminé les longitudes et les latitudes des points 
principaux, ils ont représenté graphiquement ces points sur 
une carte divisée en 259 feuilles, et couvrant 82 mètres carrés

\
de superficie. L’échelle de cette carte est------- . C’est un tra-

 ̂ 8i:000

vail admirable, digne tout à la fois des ingénieurs qui l’ont 
exécuté, et du pays dont il a fidèlement reproduit la configu­
ration.

i  12. — Nous n’étendrons pas davantage l’exposé des mé­
thodes de construction des cartes géographiques. Ce que nous 
venons de dire suffit pour donner une idée des procédés que 
l’on emploie. Nos lecteurs trouveront, d’ailleurs, dans la note x, 
à la fin du volume, quelques détails sur les cartes de Flumsteed 
et de Mercator, et quelques remarques utiles sur ces sortes 
de constructions.

1 1 5 . R emarque. — Pour compléter l’étude de notre globe, 
nous devrions donner quelques développements sur l’atmo­
sphère terrestre et sur les réfractions atmosphériques; mais ce 
sujet n’étant pas compris dans le programme des éludes, nous 
pinçons dans la note xi les notions qui nous paraissent indis­
pensables à connaître.

LIVRE II.  ---- LA TERRE.

EXERCICES ET APPLICATIONS.

m .  _  io On admet qne les tropiques sont à 23° 27'30" de l’éqnatenr, et 
que chaque cercle polaire est à 23° 27’30" du pôle correspondant, et l’on 
propose de calculer les aires de chacune des cinq zones, eu prenant pour 
unité la surface de la terre.

2° Une personne s’élève i  nne hauteur h au-dessus de la surface do la 
terre : l’aire de la zono visible pour elle est u> ; on demande d'établir une 
relation entre h, o> et le rayon [\ de la terre, et de discuter cette relation.

3° Construire une carte mappemonde en projection orthographique ou en 
projection stéréographique sur l’horizon de Paris.



4° Calculer le rayon d’un parallèle terrestre dont on donne la latitude.
5° Lorsqu’une mappemonde est construite en projection orthographique sur 

le premier méridien (8g. 31), on demande de calculer le petit axe d’un méri­
dien dont on donne la longitude ; calculer ensuite la distance au grand axe 
d’un point de ce méridien dont on donne la latitude.

6° Projection stéréographique sur l’équateur : calculer le rayon d’un paral­
lèle dont on donne la latitude.

7° Projection stéréographique sur le premier méridien (8g. 3G). Calculer, 
p-iur un parallèle dont la latitude est donnée, et pour un méridien dont la 
longitude est donnée, le rayon et la distance du centre au centre de la carte.
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MOUVEMENT PROPRE APPARENT Dü SOLEIL AUTOUR DE LA TERRE; 
MOUVEMENT RÉEL DE LA TERRE AUTOUR DU SOLEIL.

CHAPITRE PREMIER

MOUVEMENT CIRCULAIRE DU SOLEIL.

Mouvement annuel apparent du soleil. — Écliptique. — Points équinoxiaux.
— Constellations zodiacales.

§ I. — Détermination graphique du cercle décrit par le soleil.

1 1 5 .  P remière preuve du mouvement du soleil. — Lors­
qu’on observe le soleil pendant un certain nombre de jours 
consécutifs, on ne tarde pas à s’apercevoir qu’il ne paraît pas 
décrire toujours, comme une étoile, la même courbe dans son 
mouvement diurne. Ainsi, tandis qu’une même étoile, à toutes 
les époques, se lève chaque jour au même point de l'horizon, 
monte précisément à la même hauteur, et se couche exacte­
ment au même point, le soleil se lève et se couche en des 
points qui sont tantôt plus près du midi que du nord, tantôt 
plus près du nord que du midi : il s’élève, en outre, à des 
hauteurs fort variables au-dessus de l’horizon. Il paraît donc 
avoir un mouvement en déclinaison, qui le rapproche successi­
vement des deux pôles.

De plus, si l’on observe l’état du ciel pendant plusieurs nuits 
consécutives, on remarque un changement d’une autre nature. 
Ainsi, dans les premiers jours de juin, on voit, le matin, à



l'orient, le lever du Bélier précéder de peu de temps celui 
du soleil. Un mois après, le Bélier s’est éloigné de l’orient, et 
c’est le Taureau qui l’a remplacé; un mois après encore, les 
Gémeaux à leur tour apparaissent à l’orient à la fin de la nuit, 
tandis qu’à ce moment le Taureau et surtout le Bélier sont 
déjà assez élevés au-dessus de l’horizon. On voit ainsi, à 
mesure que les mois s’écoulent, de nouvelles constellations 
surgir le matin avant le soleil; et une époque arrive où le 
Bélier se couche à l’occident peu d’instants avant celui où le 
soleil se lève dans la région opposée du ciel. Cet astre paraît 
donc avoir un mouvement en ascension droite, dirigé en sens 
contraire du mouvement diurne.

I1G. Mesure de la déclinaison et de l’ascension droite du 
centre du soleil. — Pour étudier ce double mouvement, il 
nous suffira évidemment de mesurer l’ascension droite et la 
déclinaison du soleil à différentes époques, et de construire 
sur une sphère céleste le lieu des positions successives qu’il 
parait occuper dans le ciel. Mais le soleil ne nous apparaît pas 
comme un point, à la manière des étoiles : il nous présente 
un disque parfaitement circulaire, d’un diamètre sensible 
(voy. la note ni, sur l’usage de l’héliomètre pour la détermi­
nation de la forme du disque du soleil). C’est donc de son cen­
tre que nous aurons à déterminer les coordonnées.

Pour cela, au moment du passage au méridien, on amène 
le fil horizontal de la lunette du cercle mural à être tangent 
intérieurement, d’abord au bord supérieur, puis au bord infé­
rieur du disque, et on note dans chaque cas la distance zéni­
thale correspondante : on corrige d’ailleurs chacune d’elles 
de la réfraction (voy. note xi). Si, après cette correction, on les 
désigne par Z et Z', et qu’on appelle /Te diamètre du fil, on 
voit que les distances zénithales des deux bords sont respecti- 

1 tvernent Z — - / e t  Z' - f  -  f ; par suite, la distance zénithale du
A

centre est leur demi-somme, ou -  (Z -j- Z') (1); et cette dis-

(I) On doit aussi corrigor cette valeur do la parallaxe de hauteur, comme 
on le verra plus tard.
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tance fournit la déclinaison du centre, d’après la méthode or­
dinaire (n° 40).

D’autre part, on amène le fil vertical central de la lunette 
méridienne à être tangent intérieurement, d’abord au bord 
antérieur, puis au bord postérieur du disque, et l’on note 
l’heure sidérale de chacun de ces contacts : la demi-somme 
de ces temps est l’heure sidérale du passage du centre au mé­
ridien ; car là aussi les erreurs provenant de l’épaisseur du fil, 
dans les deux observations, disparaissent dans l’addition. En 
convertissant ce temps en degrés, on obtient l’ascension 
droite du centre (n° 39). On aura une approximation plus 
grande, en notant les heures des contacts intérieurs aux cinq 
fils verticaux de la lunette, et en prenant la moyenne des 
dix observations.

117. Variations des deux coordonnées. — On peut ainsi dé­
terminer, chaque jour, à midi, lorsque le soleil n’est pas caché 
par des nuages, les coordonnées de son centre, et en faire un 
tableau qui comprenne plusieurs années. En examinant ce 
tableau, on voit que la déclinaison est australe en décembre, 
et qu’elle va en augmentant jusqu’au 22 décembre, où elle 
atteint un maximum d’environ 23° 27' 13"; puis elle diminue 
progressivement jusque vers le 21 mars; elle devient nulle à 
cette époque, et le centre du soleil est dans l’équateur. Les 
jours suivants, la déclinaison est boréale, et elle augmente 
jusque vers le 22 juin, où elle atteint un deuxième maximum 
de même valeur que le premier ; alors elle décroît et redevient 
nulle vers le 21 septembre ; puis elle est australe et elle croît 
jusqu’au 22 décembre, époque à laquelle elle atteint sa limite 
accoutumée, pour passer de nouveau par les mômes variations. 
Onreconnaîtaussi,à l’inspectiondu tableau,quela déclinaison 
varie le plus rapidement quand le soleil est voisin de l’équateur, 
et que la variation devient insensible, lors des plus grandes dé­
clinaisons : alors les hauteurs méridiennes du soleil ne chan- 
gentpas pendant plusieurs jours,et cet astre paraît stationnaire.

Quant aux ascensions droites, on voit que, si le soleil a passé 
un certain jour au méridien, en même temps que le point 
vernal, il y passe après lui les jours suivants, et son ascension
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droite, d’abord nulle, va constamment en augmentant. Mais 
cette augmentation n’est pas non plus uniforme; elle est tan­
tôt plus rapide, tantôt plus lente. La moyenne de ces varia­
tions est, par jour sidéral, environ 59', 16, c’est-à-dire à peu 
près 1°. Ainsi, le soleil, en même temps qu’il se rapproche ou 
qu’il s’éloigne de l’équateur, s’avance chaque jour vers l’orient 
d’une quantité variable, qui est environ 1°.

118. Grand cercle que le soleil parait décrire a travers 
les étoiles. — Si l’on construit sur un globe céleste le lieu des 
positions successives du centre du soleil, en portant sur ce 
globe les ascensions droites et les déclinaisons observées, 
d’après les méthodes indiqués au n° 41, et si l’on fait passer 
un cercle par trois des positions obtenues, on reconnaît que 
ce cercle contient toutes les autres, et que, de plus, il est un 
grand cercle de la sphère. Si l’on porte ces coordonnées sur 
une mappemonde céleste construite dans le système stéréo- 
graphique, on trouve encore oue le lieu des projections du 
centre du soleil est un arc de cercle, qui va couper le tableau 
aux extrémités d’un môme diamètre du contour de’la carte. 
Il faut en conclure aussi que :

Le centre du soleil paraît décrire, d'occident en orient, un 
grand cercle de la sphère céleste, incliné à l'équateur.

119. — Mais il faut remarquer avec soin que rien, dans ce 
qui précède, ne peut nous éclairer sur la distance du soleil à 
la terre; le soleil est peut-être beaucoup plus près de nous que 
les étoiles. Par conséquent, le grand cercle que nous venons 
de tracer sur la sphère ne doit pas être considéré comme la 
courbe qu’il décrit autour de nous, mais simplement comme 
la perspective de cette courbe vue du point où nous sommes, 
c’est-à-dire comme sa projection sur la voûte céleste. Ce que 
nous pouvons dire seulement, c’est que cette perspective est 
un grand cercle dont nous occupons le centre, et que, par 
conséquent, la courbe est plane.

120. Conception des deux mouvements apparents du soleil.
Lorsqu’on regarde les étoiles comme fixes et la sphère cé­

leste comme immobile, rien n’est plus simple que la concep- 
iion du mouvement du soleil : il chemine lentement, à travers
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les étoiles, d’occident en orient, en parcourant environ un 
degré par jour sidéral. Mais, dans l’hypothèse du mouvement 
diurne apparent du ciel, on éprouve quelque peine à combi­
ner les deux mouvements qu’il faut alors attribuer à cet as­
tre : on ne s’explique pas facilement comment, tout en obéis­
sant aux lois générales du mouvement diurne, il peut avoir en 
outre un mouvement propre, dirigé presque en sens contraire. 
Cependant concevons qu’on fasse tourner d’orient en occident 
un globe céleste en carton autour du diamètre qui passe par 
les pôles; puis supposons, suivant l'ingénieuse comparaison 
de F. Arago, qu’une mouche placée sur ce globe, près de l’é­
quateur, chemine lentement, d’occident en orient, le long 
d’un grand cercle incliné à celui-ci : évidemment la mouche 
sera entraînée d’orient en occident par la rotation rapide de 
la sphère, mais moins que si elle était restée immobile ; elle 
s’éloignera constamment des étoiles fixes sur lesquelles elle se 
trouvait d’abord, et passera de plus en plus tard au méridien, 
à chaque révolution du globe. Cette mouche est l’image du 
soleil.

§  II. — Calcul des Eléments do mouvement circulaire du soleil.

12 1 . Marché a suivre pour déterminer l'écliptique. — La 
construction graphique que nous venons de donner, pour dé­
terminer la nature de la courbe que le soleil paraît décrire à 
travers les étoiles, a besoin d’être contrôlée. Nous suivrons 
ici la même marche que dans le premier livre, pour opérer 
cette vérification ; je veux dire que nous admettrons provisoi­
rement comme certain le résultat auquel nous avons été 
conduits : nous chercherons, dans cette hypothèse, à déter­
miner complètement le plan de la courbe; et nous nous assu­
rerons ensuite que ce plan contient réellement toutes les po­
sitions observées du soleil.

122 . É cliptique, équinoxes,solstices, obliquité de l’éclipti­
que. — Donnons d’abord quelques définitions. Le grand cer­
cle qui, dans l’hypothèse admise, est le lieu des positions du 
soleil, se nomme l'Ecliptique, parce que c’est dans le voisi­



nage de ce plan que se trouve la lune, à l’époque des éclipses. 
Ce plan coupe l’équateur suivant un diamètre qu'on appelle 
la ligne des équinoxes. Dans la figure -44, où l’axe est PP' et 
l’équateur E5E/, l’écliptique est représentée par le grand 
cercle SS', et la ligne des équinoxes par T  Le moment 
où le soleil traverse 
l’équateur pour aller 
de l’hémisphère austral 
dans l’hémisphère bo­
réal se nomme l’équinoxe 
du printemps; l’instant 
où il le traverse pour al­
ler au contraire de l’hé­
misphère boréal dans 
l’hémisphère austral est 
Véquinoxe d'automne. A 
ces deux époques, le so­
leil décrivant sensible­
ment l’équateur en vertu du mouvement diurne, le jour est 
égal à la nuit pour toute la terre. Les points T  (signe du Bé­
lier) et rCt (signe de la'Balance), où s’opèrent ces passages, 
sont les points équinoxiaux. L’instant où le soleil atteint sa 
plus grande déclinaison, boréale ou australe, s’appelle lesoé- 
stice, parce qu’alors le soleil paraît s’arrêter pendant quelques 
jours, avant de se rapprocher de l’équateur. Le solstice d’été 
correspond à la plus grande déclinaison boréale, le solstice 
d’hiver à lapins grande déclinaison australe. Les points de l’é­
cliptique où la déclinaison est le plu ; grande sont les points 
solsticiaux. L’angle dièdre que le plan de l’écliptique fait avec 
celui de l’équateur se nomme l'obliquité de l’écliptique.

Si l’on fait passer, par l’axe PP’, un plan perpendiculaire à 
la ligne des équinoxes, ce plan détermine sur la sphère céleste 
un grand cercle PSP'S', perpendiculaire à la fois à l’équateur 
et a 1 écliptique. L’arc SEs, compté sur ce cercle, mesure l’an­
gle S iE s, c est-à-dire l’obliquité de l’écliptique. On voit que 
cet angle est égal à la plus grande déclinaison du soleil ; car, 
pour une position quelconque K de l’astre, l’arc oblique PK

COSM. G. 7
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est plus grand que l’arc perpendiculaire PS ; or PE,; - PD; 
donc l’arc SE, est plus grand que l’arc KD. Le plan PSP'S' s’ap­
pelle colure des solstices. De môme le plan qui passe par PP' et 
par la ligne des équinoxes s’appelle colure des équinoxes.

123. Ax e , poles de l’écliptique. — La perpendiculaire éle­
vée au point T, sur le plan deTécliptique, est l'axe de l’éclip­
tique : elle perce la sphère en deux points P„ P,', qui sont les 
pôles de l’écliptique.

124. T ropiques, cercles polaires. —Les tropiques célestes 
sont de petits cercles, parallèles à l’équateur, qui sont menés 
parles points solsticiaux S et S'. Ce sont les parallèles extrê­
mes que le soleil paraît décrire aux solstices, en vertu du 
mouvement diurne. Ils sont représentés sur la figure par les 
cercles ST, ST. Après les avoir décrits, le soleil semble reve­
nir sur ses pas, pour se rapprocher de l’équateur; de là le 
nom de tropiques. Le premier ST, qui se trouve dans l’hémi­
sphère boréal, se nomme tropique du Cancer; le deuxième ST, 
tropique du Capricorne. Il semble que ces noms aient été ima­
ginés par des peuples de nos régions boréales, qui, voyant le 
soleil, après le solstice d’été, retourner en quelque sorte en ar­
rière pour revenir à l’équateur, ont signalé cette marche ré­
trograde par le symbole significatif du Cancer ou de lÉcre­
visse;^  qui, voyant ensuite, après le solstice d’hiver, l’astre 
remonter, gravir vers l’équateur, ont voulu caractériser celte 
marche ascensionnelle par le nom du Capricorne ou de la 
Chèvre, dont on connaît assez les instincts ordinaires.

Les cercles polaires célestes sont d’autres petits cercles CP,, 
C'Pi', parallèles à l’équateur, et dont la distance au pôle est la 
même que la distance des tropiques à l’équateur.

123. D étermination des points équinoxiaux. — Pour déter­
miner complètement la position du plan de l’écliptique clans 
l’espace, il suffit de fixer : 1° la position de la ligne des équi­
noxes; 2J l’inclinaison de l’écliptique sur l’équateur.

Or, si l’on consulte le tableau des déclinaisons du centre du 
soleil, on voit que, vers le 21 mars, la déclinaison cesse d’être 
australe pour devenir boréale : c’est évidemment à cette épo­
que qu’elle devient nulle, c'est-à-dire que l’astre traverse l ’é­

9 S LTV RE III. —  LE SOLEIL.
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quateur. Supposons, pour fixer les idées, qu’au midi du 
20 mars elle soit encore australe et égale à CD, et qu’au midi 
«u 21 mars elle soit boréale et égale à (D' : c ’est entre ces deux 
instants qu’a eu lieu le passage. Si l ’on a mesuré, en outre, les 
ascensions droites A et A' 
du soleil aux deux midis, 
on en déduira facilement 
ascension droite du 
point équinoxial T - Car, 
soient (fig. 45) : S et S' 
les deux positions obser­
vées, et I l’origine des 
ascensions droites ; on a 
SD =  CD, S'D' =  (D',ID=
A , 1U' =  A'. Or les trian­
gles St D, S't D’ étant 
très-petits, peuvent être 
considérés com m e rectilignes et semblables, puisqu’ils sont 
rectangles : on a donc,

SD t D CD A t— A
S'D' — T b ” ° U CD’ X —â r

en désignant, par A T  l’ascension droite It  du point équinoxial. 
Un en lire, par addition,

CD -f- CD A' — A
CD A y —A

d’où A y =  A
(A  — A) CD
" œ T + ' cd7'’ 0 )

On arriverait à la môme formule, en considérant que, 
dans l’intervalle d’un jour, l’ascension droite et la déclinai­
son varient uniformément. On voit que, pour avoir l'ascen­
sion droite du point T , il suffit de calculer l’expression

(A' ~ A )X  © T ® '’ c ld  ’en ajouter la valeur à A.

On calcule de môme l ’ascension droite du point =Q=, vers le 
22 septembre, et l’on reconnaît que ces deux arcs diffèrent 
de 180°. Les deux points T  et ^ so n ld o n c  auxextrémités d ’un
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diamètre de la sphère céleste : cJest une première vérification 
de notre hypothèse.

1 2 6 . D étermination de l’équinoxe. — On peut calculer l’in­
stant de l’équinoxe d’une manière analogue. Car si t est le 
temps sidéral écoulé dans l’intervalle des deux midis, comme 
on peut supposer que la déclinaison varie uniformément pen­
dant un temps si court, on dit : si une variation (33 -j- 63' de 
la déclinaison correspond à un temps t , une variation CD cor­
respondra au temps

t  =  /X
A3
—|— 03

Cette valeur de t est ce qu’il faut ajouter à  l’heure sidérale 
du midi du 20 mars, pour avoir l’instant de l’équinoxe. 
En 1869, l’équinoxe du printemps arrive le 20 mars à l h 41m du 
soir (temps moyen), et l’équinoxe d’automne le 23 septembre, 
à 0h 37m du matin (temps moyen).

1 2 7 . Détermination de l ’obliquité de l’écliptique. — Pour 
déterminer l’obliquité de l’écliptique, il suffirait de mesurer 
la hauteur méridienne du soleil, le jour du solstice, si le sol- 
stice arrivait à midi, ce qu’on ne peut pas espérer, et d’en dé­
duire la déclinaison correspondante. Mais on doit remarquer 
qu’à cette époque la hauteur méridienne du soleil varie peu

d’un jour à l’autre. 11 suf­
fira donc, au moins pour 
une première approxima­
tion, de prendre la plus 
grande déclinaison obser- 
véecomme mesure del’o- 
bliquité. Au 1er janvier 
1869, cet angle est égal à 
23° 27' 15",4.

On peut encore calcu­
ler l’obliquité d’une au­
tre manière qui n’exige 
pas, comme la méthode 

précédente, la connaissance de la latitude du lieu d’observa;

Fig. IG.



tion. Car, soient (fig. 46): T le centre de la terre et de la sphère 
céleste, PEU le méridien de l’observateur, HH', EE', CG’, les 
traces de l’horizon, de l’équateur et d e l’éeliptique sur ce plan. 
Soit Z le zénith : les distances zénithales méridiennes du 
soleil, aux jours des soltices, lors du passage supérieur, sont 
ZC et ZD, puisqu’il décrit alors les tropiques dont les traces 
sont CD' et CD'. Leur différence est CD, double de l’obliquité 
CE. Il suffit donc de mesurer ces deux distances et d’en pren­
dre la demi-différence, pour avoir la valeur de l’obliquité.

1 2 8 . Vérification de la nature de la-courbe décrite par le 
soleil. — Maintenant que nous connaissons les deux éléments 
qui déterminent complètement la position du plan de l’éclip­
tique, nous pouvons tracer ce grand cercle sur un globe cé­
leste, et, en rapportant sur ce globe les possitions successives 
du centre du soleil, reconnaître qu’elles sont toutes situées 
sur ce cercle.

Donc le soleil parait décrire autour de la terre, d’occident en 
orient, un grand cercle de la sphère céleste, dont le plan est in­
cliné de 23° 27' 15" environ sur celui de léquateur (1).

§ III. —  Constellations zodiacales.

1 2 9 . Zodiaque. — La route que suit le soleil à travers les 
étoiles étant toujours la môme, les anciens ont cherché à la 
caractériser, en créant des constellations composées avec les 
astres qui se trouvaient sur son passage. Ils ont imaginé, en 
conséquence, une zone dont les basses, parallèles au plan de 
l’écliptique, en sont distantes de part et d’autre de 8“|  envi­
ron ; puis ils ont partagé cette zone en douze parties égales 
de 30°, ou dodécatémorie, par douze demi-grands cercles per­
pendiculaires à l’écliptique, le premier d'entre eux passant par 
le point vernal. Enfin ils ont groupé les étoiles de chacun de 
ces douzièmes, et formé ainsi, le long de l'écliptique, douze 
constellations, dont chacune était parcourue en un mois par 
le soleil. Ce sont les constellations zodiacahs, et la zone qui les 
renferme est le zodiague.

CHAPITRE I.  —  MOUVEMENT CIRCULAIRE IU  SOLEIL. 10!

(I) Voir la note xu à la fin du volume.
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Voici les noms latins et les signes représentatifs de ces 
douze constellations, dans l’ordre où le soleil les traverse suc­
cessivement :

1 02

Sunt : Aries, Taures, Gemini,
r  V H

Libraque, Scorpiiis, Arcitenens, 
£= nu *»

Cancer, Leo, Virgo, 
S  P. "»

Caper, Ampliora, Pisces.

Nous les nommons en français le Bélier, le Taureau, les Gé­
meaux, le Cancer, le Lion, la Vierge, la Balance, le Scorpion, 
le Sagittaire, le Capricorne, le Vei'seau et les Poissons. Plusieurs 
d’entre elles ont été décrites au n° 44; les autres ne présen­
tent pas d’étoiles remarquables.

Nous dirons, en traitant de la précession des équinoxes, ce 
qu’on nomme les douze signes du zodiaque, et pourquoi ils ne 
correspondent pas aujourd’hui aux constellations dont ils por­
tent les noms.

CHAPITRE II

MOUVEMENT ELLIPTIQUE DU SOLEIL.

Iiiamiitre apparent dn soleil, variable avec le temps. — Le soleil paraît dé­
crire une ellipse autour de la terre. — Principe des aires.

£50. E xposé de la question. —Nous avons dit, dans le cha­
pitre précédent, que les méthodes employées pour démontrer 
le mouvement circulaire du soleil ne prouvaient qu’une chose : 
c’est que la perspective de l’astre, vu de la terre et projeté 
sur la sphère céleste, décrit un grand cercle de celle sphère. 
Mais elles ne nous apprennent rien sur la distance à laquelle 
le soleil se meut, ni sur les variations de cette distance, aux 
diverses époques de son mouvement. Ainsi, rien, dans les dé­
monstrations antérieures, ne s’oppose à ce que, sanssortir du 
plan de l’écliptique, il se rapproche et s’éloigne de nous alter­
nativement, à ce qu’il circule autour de nous avec une vitesse 
variable dans une courbe plane infiniment plus, voisine de
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nous que ne le sont les étoiles. Nous nous proposons, dans ce 
chapitre, de traiter la question sous ce nouveau point de vue. 
et d’exposer les moyens de déterminer la nature de l’orbite 
réelle du soleil. Pour y parvenir, nous devons apprendre à 
mesurer deux nouveaux éléments, son diametre apparent et 
sa vitesse angulaire.

§ I. — Mesure du diamètre apparent et de la vitesse anrclairïï

DU SOLEIL.

4 5 1 . Diamètre apparent du soleil. — Soient (flg. 47), S le 
soleil, et O l’œil de l’observateur : menons du point O, à 11 

surface, les tangentes OA et OB dans un plan passant par le

•  I ' i g .  4 7 .

centre de l’astre : l’angle AOB se nomme le diamètre apparent 
du soleil. Comme la droite AB, qui joint les points de contact, 
se confond avec son diamètre réel, à cause de la grande dis­
tance OS, on dit que le diamètre apparent est l’angle sous le­
quel on voit ce diamètre réel.

Pour mesurer le diamètre apparent du soleil, à un jour 
donné, on l’observe au cercle mural, au moment du passage 
au méridien, comme si l’on voulait obtenir la distance zéni­
thale méridienne du centre (n» 116) : les distances zénithales 
des deux bords, lors du contact intérieur du lil horizontal, sont 

1 , 1
Z — - / et Z' et le diamètre apparent est leur diffé­

rence Z' — Z -(- f  ■' il faudra donc ajouter à la différence des 
distances zénithales observées le diamètre du 01. On ren­
dra mutile la connaissance de ce diamètre du fil, si l’on
opèie 1 un des contacts extérieurement et l’autre intérieure­
ment (1). 1

1 ariation du diamètre apparent. — L orsqu’on form e
i i ) V o i r  l a  n o t e  x m ,  à  l a  f in d u  v o l u m e .
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le tableau des valeurs du diamètre apparent du soleil aux di­
verses époques de son mouvement, on reconnaît qu’il varie 
périodiquement entre certaines limites. Ainsi il atteint un 
maximum égal à 32' 36",2 vers le 31 décembre ; puis il dimi­
nue progressivement; vers le 1er juillet, il est à son minimum, 
et ne vaut plus que 31' 30",3; à partir de cette époque, il croît 
lentement jusqu’au 31 décembre, et ainsi de suite.

155. T héorème. — La distance d'un corps à un point donné 
varie en raison inverse de son diamètre apparent, pourvu que 
ce dernier soit suffisamment petit. Car, soit AB (fig. 47) le 
diamètre réeld’un corps vu du point O sous un angle fort petit : 
AB est perpendiculairesur la droiteOS, et les droites OA, OB, 
OS, sontsensiblement égales; en d’autres termes, l’arc AB, dé­
crit du point O comme centre, se confond avec sa corde. Repré­
sentons par S le diamètre apparent AOB, évalué en secondes, et 
par d la distance OS ; la demi-circonférence de rayon d, dont 
l’arc AB fait partie, est égale à nd ; l’arc d’une seconde 

Tzd “ d$
™ ‘ CÏSÔÔ-et rirc AD’ corres‘'ond à *"• ™ » 5 5 ^ 5 -  
La corde AB, c’est-à-dire le diamètre réel de l’objet, se con-

tuiSfondant avec son arc, a donc aussi pour valeur— . Lors-b48000
que la distance varie et devient d, le diamètre apparent 
devient S1, et le diamètre réel, qui reste le même, est égal à

t,do
648600

On doit donc avoir :

Ttdà TldS
C48000 648000 , ou dS =  d'o,

d’où l’on déduit
d _ S  
d ~  S‘ C. Q. F. D.

134. Variation de la distance du soleil a la terre. — Si 
l’on applique ce théorème au diamètre apparent du soleil, on 
en conclut que, ce diamètre étant variable, la distance de l’as­
tre à la terre varie également : donc le soleil ne décrit pas un 
cercle dont la terre occupe le centre.



15o. Vitesse angulaire du soleil. — La vitesse angulaire du 
soleil, à une époque donnée, est l’angle formé par les rayons 
visuels menés aux deux positions que l’astre occupe sur l’éclip­
tique à 24 heures sidérales de distance. Ainsi, soit CG' l’éclip­
tique (fig. 48), et soient S, S', les deux positions du soleil au 
commencement et à la fin d’un jour sidéral ; l’angle STS' est 
sa vitesse angulaire. Elle est mesurée par l’arc SS' qu’il a par­
couru en un jour sur l’écliptique. Il serait difficile de déter­
miner cet arc par des observations directes : on préfère l’ob­
tenir par le calcul. On prend à cet elfet dans le tableau des 
ascensions droites et des déclinaisons du centre du soleil 
(n° 117) les valeurs de ces coordonnées, qui correspondent à 
deux observations méridiennes consécutives. L’un des systè­
mes de valeurs fait connaître, dans le triangle TUS, les deux 
côtés TH et SH ; et la 
trigonométrie sphérique 
fournit le moyen d’en con­
clure l’hypoténuse T?, 
c’est-à-dire la longitude 
du soleil lors de la pre- 
mièreobservalion : un cal­
cul analogue donne la 
longitude du soleil lors de 
la seconde observation.
La différence des longitu­
des est l’arc s décrit par le 
soleil dans l’intervalle des 
deux observations; et si l’on désigne par t  cet intervalle de 
temps évalué en heures, la vitesse angulaire est évidemment 

24
* X j ,  à l’époque choisie (1).

1 5 6 .  Mouvement angulaire du soleil sur l’écliptique. — On 
peut ainsi déterminer, pour chaque jour, la vitesse angulaire 
du soleil, et reconnaître qu’elle n’est pas constante. Elle atteint 
son maximum vers le 31 décembre, époque à laquelle elle 
vaut 1° 1' 9" : elle décroît ensuite lentement jusqu’au 2 juil—

( I )  V o ir  l a  n o t e  i à  l a  f in  d u  v o lu m e .
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let, époque à laquelle elle vaut seulement 57' 12",3 ; puis elle 
va croissant pendant le reste de l’année.

Ainsi le m o u v em e n t a n g u la ire  d u  so le il  su r  l 'é c lip tiq u e  n ’e s t  

p a s  u n ifo rm e.

§  I I .  —  O r b i t e  e l l i p t i q u e  d é c r i t e  p a r  l e  s o l e i l .

1 5 7 . C o n s t r u c t i o n  p a r  p o i n t s  d e  l ’o r b i t e  d u  s o l e i l . — Lam e- 
sure du diamètre apparent et de la vitesse angulaire nous 
permet de construire par points une courbe semblable à l’or­
bite du soleil. En effet, soit T (fig. 49) la position de l’observa­
teur; décrivons, du point T comme centre, un cercle EFGII, 
avec un rayon arbitraire, dans le plan de l’écliptique. Prenons 
sur ce cercle un point H, joignons TH, et supposons que cette 
droite soit la direction du rayon visuel mené au soleil, le 31 dé­

cembre, lorsque son dia­
mètre apparent S est ma­
ximum et égal à 32' 36'', 2. 
Prenons, en outre, pour 
unité la distance corres­
pondante d  de l’astre à la 
terre, et représenlons-la 
par TP : P sera la position 
du soleil à cette époque. 
Portons maintenant sur 
le cercle, à 'partir du 
point K, des arcs HI, II'. 
H", etc., respectivement 

égaux aux vitesses angulaires consignées au tableau pour le 
31 décembre, le 1er, le 2 janvier, etc. ; les rayons TI, Tl', 
TI", etc., seront les directions des rayons visuels menés à 
l ’astre ces jours-là. Enfin, calculons chacune des distan-

d  S
ces correspondantes, au moyen de la formule -  =  — dans la-

cl O

quelle d  —  I, ? =  32' 36",2, et S’ représente le diamètre appa­
rent mesuré à chacune.des dates ci-dessus indiquées; et por­
tons ces distances en TS, TS', TS", etc. La courbe PSS'S”...,



obtenue en joignant, par un trait continu, les extrémités de 
-ces distances, sera le lieu des positions successives du soleil 
sur le plan de l’écliptique.

153. Nature de la courbe. — On reconnaît d’abord que 
cette courbe diffère fort peu d’un cercle, mais qu’elle n’en est 
pas un : car il n’y a pas de point qui soit également distant de 
tous ces points; et le calcul montre que le cercle qui passe­
rait par trois des positions observées du soleil ne contient pas 
toutes les autres avec une approximation suffisante. On doit 
donc renonceràl’hypothèsedu mouvement circu!aire. Comme 
l’ellipse est la courbe qui se rapproche le plus du cercle, on 
peut essayer de reconnaître si cette courbe satisfait aux obser­
vations. Mais cette recherche ne peut pas s’exécuter par des 
■constructions graphiques. On calcule donc les éléments d’une 
ellipse qui passerait par cinq des positions observées: on en 
détermine les axes et les foyers; et l’on trouve qu’en suppo­
sant l’observateur placé à l’un des foyers, il existe un accord 
satisfaisant entre les résultats du calcul et ceux de l’observa­
tion.

On peut donc conclure de là, que le centre du soleil décrit 
autour de nous, d’occident en orient, une ellipse dont la terre oc­
cupe un des foyers (1).

On nomme périgée, ou périhélie, le point P où le soleil est 
le plus près de la terre; apogée, ou aphélie, le point A où il en 
est le plus éloigné; AP est la ligne des apsides.
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§ III. — CAI.Cm, DFS ÉLÉMENTS DE l’eI.LIPSB.

159. P roportionnalité des aires aux temps. — Lorsqu’on 
compare les tableaux qui donnent les valeurs de la vitesse 
angulaire du soleil et celles de son diamètre apparent, on 
s aperçoit que ces deux éléments croissent et décroissent en­
semble, et que leurs maximum ont lieu à la môme époque, 
ainsi que leurs minimum. Il est naturel, dès lors, d’examiner 
s’ils sont proportionnels l’un à l’autre.

S il en était ainsi, en désignant deux vitesses quelconques
<!) fa  figure est fort exagérée pourrendre la démonstration sensible.
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par v, v', et les diamètres correspondants par 5, o, on aurait 
•> o d!

~ =  comme on a aussi - =  -  (n° 133); on en concluraitv o o a
v d!—, =  o \ iv d =  v'd'. Ainsi le produit de la vitesse angulaire
v d
par la distance correspondante serait invariable. Mais l’arc SS', 
parcouru en un jour par le soleil, peut évidemment, à cause 
de son peud’étendue, être considéré comme circulaire et dé­

crit avec le rayon TS =  d ;  il est donc égal cet arc se­

rait donc constant, et le mouvement serait uniforme.
Riais la proportionnalité entre les vitesses et les diamètres 

apparents n’existe pas; car la comparaison attentive des ta­
bleaux prouve que la vitesse angulaire est proportionnelle au

, , . v 82 . . .  5 d'carre du diametre apparent : ainsi =  — .Mais doncv <1 o d
v d'̂
-=■  — ; ou vd2 =  v'd'2. On voit donc que le produit de la v d2
vitesse angulaire par le carré de la distance correspondante est 
constant. Or, si l’on considère, comme tout à l’beure, l’arc SS', 
décrit en un jour, comme circulaire, cet arc est sensiblement

égal à y ^ ; et le secteur STS', étant alors un secteur circulaire,

TS ir dv d itd2v
a pour mesure SS X  tt- , ou —  X : , ° u  • Le secteur STS,z lot) a oüL)
décrit en un jour, a donc une surface sensiblement constante. 
Cette conséquence sera d’autant plus rigoureuse, que l’unité 
de temps adoptée sera plus courte : ainsi, si l’on mène des 
rayons vecteurs du point T aux positions S, S', S",... que le 
soleil occupe successivement sur son orbite après des inter­
valles de temps très-petits, mais égaux entre eux, les aires des 
secteurs STS', S'TS", S"TS'",.... sont rigoureusement égales. 
C’est cette loi qui porte le nom de principe des aires, et que 
Kepler a énoncée ainsi :

Les aires décrites par le rayon vecteur du soleil sont propor­
tionnelles aux temps employés à les décrire.

On comprend, d’après cela, que les arcs décrits en temps
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égaux sont d’autant plus grands que la distance à la terre est 
plus petite : car, si dans le produit constant vd-, le facteur d 
diminue, il faut que l’autre facteur vd, ou l'arc décrit, aug­
mente. La vitesse réelle du soleil augmente donc, quand 
il se rapproche de la terre; elle diminue quand il s’en 
éloigne.

1 4 0 . Autre construction par roiN-rs de l’ellipse solaire. — 
La loi des aires, une fois démontrée, permet de construire par

points l’orbite solaire; car réquai ion — =  —, i donne 1 a'2 v

d’ = d  i/®,
V

et permet de calculer, pour chaque longitude, la distance d’ 
correspondant à la vitesse angulaire v’, en prenant pour 
unité la distance d correspondant à la vitesse maximum 
v =  1° V 9".

Elle peut aussi être employée avec avantage pour détermi- 
nerles éléments de l’ellipse qui satisferait à certaines positions 
observées du soleil, et pour prouver ensuite que cette ellipse 
représente le lieu géométrique de toutes les autres positions.

1 4 1 . D é t e r m i n a t i o n  d e s  é l é m e n t s  d e  l ’o r b i t e . — D’abord 
le grand axe AP de l’ellipse solaire (fig. 50) est la seule droite 
passant par le foyer T, qui partage l’aire de la courbe en deux 
segments égaux. Il suit 
de là, que le soleil doit 
mettre autant de temps 
pour aller de P en A 
que pour aller de A en 
P; d’ailleurs, la diffé­
rence des longitudes de 
ces deuxpoints doit être 
de 180°. On cherche 
donc, parmi les longitudes observées, celles qui diffèrent 
de 180°, et dont les dates diffèrent d’une demi-année. L’une 
est celle du périgée, l’autre celle de l'apogée; on distingue d’ail­
leurs facilement l’un des points de l’autre, au moyen des
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vitesses angulaires aux deux époques. On trouve ainsi, en fai­
sant quelques corrections qu’il nous est impossible d’indiquer 
ici, qu’en 1865, la longitude de l’apogée est 100° 21' 22", et 
celle du périgée 280° 21' 22".

Quand la position du grand axe est ainsi déterminée sur le 
plan de l’écliptique, par rapport à la ligne des équinoxes, on 
calcule Vexcentricité de la courbe, c’est-à-dire la distance de 
son centre au foyer, en prenant pour unité, suivant l’usage, 
le demi-grand axe. Pour cela, on désigne par d et d'les dis­
tances périgée et apogée TP, TA, par v et v' les vitesses angu­
laires correspondantes fournies par le tableau, et par e l’ex­
centricité ; on a d’abord : AP =  d d,

d’où d +  d' =  2; (1)

puis d2v =  d'2v' ; (2)

et enfin AT — PT =  AP — 2PT =  20P — 2PT =  20T,

ou d'— d — 2e. (3)

On tire de là, en ajoutant et retranchant successivement 
les équations (1) et (3),

d' — i -jr  e, d =  i — e.

Mais l’équation (2) donne d\jv — d'\J v';

donc (1 — e) i j v — (1 -f- e) \Jv'\

,, , \ v - \ l v 'd où e — ——------ =•
V'ü+ vV

Or on a vu que

v =  1° 1' 9" =  3669", et v' =  57' 12",3 =  3432",3.

En substituant ces nombres dans la formule, on trouve 
e =  0,0167701. Ainsi l’excentricité de l’orbite solaire n’est 
que les 168 dix-millièmes de la distance moyenne de l’astre à 
la terre. On en déduit facilement, pour les distances périgée 
et apogée, d =  0,9832299, d '=  1, 0167701.

149. M o u v e m e n t  nu s o l e i l  c h e z  l e s  a n c i e n s . — Les anciens
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ne savaient mesurer ni le diamètre apparent du soleil, ni, par 
conséquent, les variations de sa distance à la terre. Mais ils 
savaient que son mouvement angulaire apparent n’est pas 
uniforme; et ils étaient parvenus à le représenter d’une ma­
nière assez satisfaisante, en supposant que l’astre décrit, d’un 
mouvement uniforme, un cercle dont la te'rre n’occupe pas le 
centre. On comprend, en effet, que l’œil de l’observateur, 
n’étant pas au centre, voit des arcs circulaires égaux, sous des 
angles différents, qui dépendent de sa position dans le plan 
du cercle. C’est cette hypothèse qu’Hipparque avait admise 
pour construire les tables du soleil : elle a été renversée par 
les découvertes de Kepler.

CHAPITRE III

TEMPS SOLAIRE.

Origine des ascensions droites. — Ascension droite du soleil. — Temps sola ire 
vrai et moyeu. — Principes élémentaires des cadrans solaires. — Année 
tropique; sa valeur en jours moyens. — Calendrier. — Réforme julieuue, 
réforme grégorienne.

§ I. — Nouons sur l’ascension droite du soleil .

145. Origine des ascensions droites. — Lorsque, dans la 
première partie de ces leçons, nous avons appris à calculer les 
ascensions droites des étoiles, nous avons dû choisir arbitrai 
rement, pour origine de ces coordonnées, le point où le demi- 
cercle horaire d’une étoile donnée, telle que Rigel, rencontre 
l’équateur (n° 36) ; et nous nous sommes réservé de définir 
plus tard le point de l’équateur que les astronomes substituent 
à Rigel. Ce point est celui que nous avons déterminé avec pré­
cision dans le chapitre 1er (n° 123), et auquel nous avons donné 
le nom de point équinoxial du printemps en point vernol. Ainsi, 
c est le point "T qui est l'origine des ascensions droites, comme



il est l’origine des longitudes. Il est facile, lorsqu’on a le ta­
bleau des ascensions droites des astres par rapport à Rigcl, 
d’en déduire celui des ascensions droites par rapport à T  :

car si l’ascension droite 
de T  par rapport à Ri- 
gel est représentéepar a, 
il suffira de retrancher a 
de chacune des ascen­
sions droites observées 
(augmentées, s’il le faut, 
de360°), pourlesrappor­
ter à T, comme on le voit 
aisément sur la figure51. 
Remarquons, d’ailleurs, 
que le point T  n’est pas 
un point visible sur la 

sphère céleste : il faut donc, comme nous l’avons fait, dé­
terminer son ascension droite par rapport à une étoile 
connue (n° 125), pour pouvoir le prendre ensuite comme 
origine.

Parmi les étoiles fondamentales, a d’Andromède est celle 
dont le cercle horaire coupe l’équateur le plus près deT ; son 
ascension droite en 1866 n’est que de 22' 16" environ; elle 
passe au méridien 0h l m 29s après T.

144. Origine du jocr sidéral. — Nous avons dû aussi, en 
mesurant le temps sidéral, choisir pour origine provisoire du 
jour l’instant du passage de Itigel au méridien (n° 26). Les 
astronomes ont coutume de prendre pour origine le moment 
du passagedu point vernal. Rien de plus facile qije detrouver 
ce moment : car, puisqu’on sait que a d’Andromède passe au 
méridien 0h i 10 29s après T ,  on s’arrangera pour que la 
pendule sidérale marque cette heure au passage de cette étoile; 
et il est évident qu’elle aura marqué 0h O1" O3 au moment du 
passage de T .

Cette origine commune pour le jour sidéral et les ascensions 
droites offre cet avantage déjà reconnu, que l’heure marquée 
par la pendule sidérale, au moment du passage d’une étoile
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au méridien, est la mesure immédiate de l’ascension droite de 
cet astre.

14o. Ascension droite du soleil. — D’après ce qui précède, 
l’ascension droite du soleil, à une époque donnée, est l’arc 
TD, compté sur l’équateur, dans le sens direct, à partir du 
point T  jusqu’au pied D du cercle horaire, qui contient le 
centre de l’astre. Cette coordonnée, qui va sans cesse en aug­
mentant, ne varie pas de quantités égales en temps égaux : il 
suffit, pour s’en convaincre, de jeter les yeux sur le tableau de 
ses valeurs successives.

Celte inégalité tient 5 deux causes : en premier lieu, le 
mouvement du soleil sur l’écliptique n’est pas uniforme 
(n° 136); sa longitude ne croît pas proportionnellement aux 
temps. En second lieu, le plan de l’écliptique est incliné sur 
celui de l’équateur d’un angle qui vaut plus d’un quart d’angle 
droit (n° 127). Il en résulte que, lors môme que le soleil décri­
rait des arcs égaux sur l’écliptique, les projections sphériques 
de ces arcs sur l’équateur ne seraient point égales; évidem­
ment plus petites que les arcs projetés, dans le voisinage de 
l’équinoxe,elles seraient plus grandes qu’eux vers le solstice, 
puisque l’arcTC vaut 90°, comme sa projection T  E.

On verra bientôt (n° 160) que le soleil, partant du poinlT 
situé sur l’équateur, revient à l ’équateur après un temps égal 
Û3G6Asid-, 242217 ; or, dans cet intervalle, son ascension droite 
a varié de 360°; donc, si la variation eût été uniforme, elle

eût été d e ——î ^ ——, ou de 0°58’58",C42 par jour sidéral.
366,242217

Désignons cet arc par n. Après un nombre t de jours sidéraux 
écoulés depuis l’équinoxe, l’ascension droite dusoleil eût été nt ; 
ce nombre nt est,en quelque sorte, l’ascension droite moyenne; 
elle est proportionnelle au temps. Mais l’ascension droite vraie 
diffère de nt, tan tôt dans un sens et tantôt dans l’autre, par suite 
de l’irrégularité de la variation. Cette différence, dont il faut 
augmenter ou diminuer nt, pour avoir l’ascension droite vraie 
du soleil, est toujours assez petite et varie périodiquement ; 
elle est nulle quatre fois par an, vers le 15 avril, le 14 juin, le 
31 août le 24 décembre. On la nomme équation du temps. 

cosu. g. 8
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On voit d’après cela que, pour connaître l’ascension droite 
vraie du soleil à une époque donnée, il suffit de connaître 
l’équation du temps à la même époque, et de l’ajouter (avec 
son signe) à l’ascension droite moyenne, qui est toujours cal­
culable à priori. Nous rencontrons ici le premier exemple de 
la méthode, assez usitée en astronomie, qui consiste à déter­
miner, une fois pour toutes, la moyenne des valeurs variables 
d’une grandeur presque constante, et à corriger ensuite l’er­
reur commise par une équation (i).

§  II. —  D .VERSES ESPÈCES DE TEMPS OLAIRE.

1 AG. T emps solaire vrai. — Le jour solaire vrai est le temps 
qui s’écoule entre deux passages supérieurs consécutifs du 
soleil au méridien. Le temps solaire vrai résulte de i’accumu- 
lationdes jours vrais.

Le jour solaire est plus long que le jour sidéral. Car soit 
(fig. 51) S la position du soleil sur l’écliptique CC', un jour 
donné, au moment de son passage au méridien de l’observa­
teur; et soit A une étoile qui passe au méridien en môme temps 
que lui, et dont, par suite, le cercle horaire PSD est le môme. 
Lorsque, par l’effet du mouvement diurne, qui a lieu dans le 
sens indiqué par la flèche /, l’étoile est revenue au méridien, 
le jour sidéral est accompli. Si le soleil n’avait pas de mouve­
ment propre, il n’abandonnerait pas le cercle horaire de l’é­
toile, et le jour solaire serait égal au jour sidéral ; mais il 
s’est déplacé, pendant ce jour, d’un degré environ sur l’é­
cliptique, et il est venu en S' : par conséquent, son nouveau 
cercle horaire PS' D'se trouve, à la fin du jour sidéral, à l’orient 
du méridien, d’un angle mesuré par DD' ; et il devra,s’écouler 
un certain temps avant qu’il vienne se confondre avec ce 
plan méridien. Donc le jour solaire est plus long que le jour 
sidéral.

147. Variation du jour solaire vrai. — L’excès du jour 
solaire sur le jour sidéral est sensiblement le temps que met

(1) On appelle équation ce dont il faut augmenter ou diminuer une valeur 
moyenne pour l'égaler à la valeur vraie.
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l’arc DD' à passer au méridien. Si cet arc, différence des as­
censions droites du soleil à 24 heures sidérales de distance, 
était le môme à toutes les époques, s’il était constamment 
égal à un degré, par exemple, il emploierait toujours le même 
temps (4m) dans ce passage; l’excès serait constant, et le jour 
solaire serait constant, comme le jour sidéral. Mais il n’en est 
pas ainsi; on a vu (n° 145) que la variation de l’ascension 
droite du soleil est tantôt plus lente et tantôt plus rapide ; 
le jour solaire, tout en surpassant toujours le jour sidéral, 
n’est clone pas constant. Il ne peut donc pas servir d’unité de

Il est vrai que le jour sidéral ne varie pas ; mais il offre cct 
inconvénient grave de commencer successivement à toutes les 
époques, soit du jour, soit de la nuit. D’ailleurs, c’est la mar­
che diurne du soleil qui règle les alternatives du jour et de la 
nuit ; l’homme travaille pendant que le soleil luit, il se repose 
lorsque le soleil a disparu. C’est donc le jour solaire que les 
sociétés ont dû adopter pour unité de temps ; mais aussi elles 
ont dû chercher à rendre cette unité invariable. "Voici com­
ment on y est parvenu.

148. J our solaire moyen. — Le soleil S décrit son orbite 
PTA(fig.  50) avec une vitesse variable, qui a son maximum 
au périgée P, diminue progressivement jusqu’à l’apogée A, 
et augmente ensuite jusqu’au retour au périgée. On conçoit 
un soleil fictif S’, qui,

ensemble au départ ; puis S précède S', et la distance qui 
les sépare augmente, jusqu’à ce que la vitesse de S, qui 
décroît, soit devenue égale à la vitesse moyenne : l’é­
cart est alors maximum. La vitesse de S devenant plus

temps.

partant du périgée P en 
même temps que S, 
parcourrait la même
orbite, dans le même 
temps que lui, mais d’un 
mouvement uniforme, 
avec la vitesse moyenne. 
Ces deux soleils sont Fig. 50.



petite que celle de S', l’arc SS' diminue ; et les deux soleils 
se retrouvent ensemble à l’apogée A, au bout d’une demi- 
révolution. Après le passage en A, c ’est S' qui devance S; 
leur distance croît, jusqu’à ce que la vitesse de S, qui aug­
mente, devienne égale à celle de S' ; alors l’écart est maxi­
mum ; et, à partir de ce moment, la vitesse de S devenant 
supérieure à celle de S', les deux soleils se rapprochent, 
et se retrouvent ensemble en P après une révolution com­
plète. L’écart qui existe, à un moment donné, entre S et S', 
se nomme üéquation du centre : c’est l’arc dont il faut augmen­
ter ou diminuer la longitude moyenne pour avoir la longitude 
vraie.

Mais le soleil fictif S'ne passe pas au méridien à des inter­
valles de temps égaux ; il ne donne pas des jours solaires 
constants. Car cette hypothèse ne fait disparaître que la pre­
mière des causes d’irrégularité dans la variation de l’ascension 
droite du soleil (n° 145). On conçoit donc un second soleil 
fictif S", qui, partant du point T  en même temps que S', par­

courrait l’équateur dans 
le même temps, avec la 
même vitesse. Si, à un 
certain moment, l'un se 
trouve en S' (fig. 52) sur 
l’écliptique, l’autre se 
trouve en S" sur l’équa­
teur, à une distance T  S" 
=  T  S'. Le cercle horaire 
de S" devance d’abord 
celui de S'; mais ils vien­
nent se confondre au 
solstice d’été, puisque 

les arcs décrits alors, T  E, T  C sont égaux ; ils se confon­
dent de même à l’équinoxe d’automne et au solstice d’hi­
ver. Or, ce soleil S", décrivant des arcs égaux en temps égaux 
sur l'équateur, chacun de ces arcs met le même temps à pas­
ser au méridien ; et le jour solaire correspondant est con­
stant, comme le jour sidéral. C’est le jour donné par ce troi-
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sième soleil S", que l’on appelle jour solaire moyen, et que l’on 
prend pour unité de temps.

149. R apportdu jour moyen au jour sidéral. — Les conven­
tions que nous venons d’exposer nous permettent de calcu­
ler le rapport du jour moyen au jour sidéral. En effet, on verra 
(chap. VIII), qu’en vertu de la précession des équinoxes, le so­
leil vrai ne décrit pas l’écliptique entière en 366J - M-, 242217 ; 
il lui reste encore à parcourir un petit arc 8 =  50",2. Sa vi-

300»__g
tesse moyenne, par jour sidéral, est donc n — ——--------- .J 1 J 300,242217
Le soleil moyen, qui se meut sur l’équateur avec cette vitesse 
moyenne, se déplace donc, en un jour sidéral, vers l’orient, 
de l’arc n. Mais la sphère céleste tourne, pendant ce temps, 
de 360°, en sens contraire ; donc le soleil moyen ne décrit 
réellement sur l’équateur, en un jour sidéral, en vertu du 
mouvement diurne, que 360° — n. Pour trouver le temps 
qu’il met à parcourir les 360°, c’est-à-dire le jour moyen, on 
remarque que ce temps est proportionnel à l’arc décrit, puis­
que les deux mouvements sont uniformes.

Par conséquent :

150. S urdivisioxs du jour solaire moyen . — Le jour solaire 
se subdivise, comme le jour sidéral, en 24 heures, l’heure en 
GO minutes, la minute en 60 secondes. Puisqu’un jour solaire 
moyen vaut 1J- •**, 0027378, il est évident que 1h' ,oL moy- vaut
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\ ^-^-,0027378, etc. On compte par jour deux lois 12 heures, 
au lieu de 21 heures conséculives.

Si l’on prend le jour solaire moyen pour unité, le jour
|  j. sol. moy.

sidéral est égal à- ou à *o!-moÿ-,997268, ou enfin

à 23A 56m 3’,935 (temps solaire moyen).
l o i .  O r i g i n e  d u  j o u r  m o y e n . — L’origine du jour moyen est. 

le moment du passage du soleil moyenS" au méridien. Seule­
ment, tandis que l’usage civil est de prendre le passage infé­
rieur (minuit), les astronomes font commencer le jour à 
midi, au moment du passage supérieur suivant. Gomme on ne 
peut pas observer ce soleil fictif, c’est le soleil vrai dont on 
détermine le passage ; et l ’on corrige ensuite l’heure trouvée, 
d’après les considérations suivantes.

132. T e m p s  m o y e n  a  m i d i  v r a i , é q u a t i o n  d u  t e m p s .  — Nous 
avons déjà dit (n° 145) que l’ascension droite du soleil vrai S 
est égale à l’ascension droite du soleil moyen S", augmentée 
ou diminuée de la partie périodique nommée équation du 
temps. Dans les cas où l’on doit ajouter ce petit arc, il est évi­
dent que S" passe au méridien avant S, qu’il est midi moyen 
avant d’étre midi vrai ; par suite, lorsqu’il est midi vrai, il 
est un peu plus de midi moyen. Il faut donc ajouter quelque 
chose à l’heure vraie pour avoir l’heure moyenne correspon­
dante ; et ce qu’il faut ajouter est le temps qui s’est écoulé 
entre les deux passages : c’est le nombre de minutes et de se­
condes représenté par l’équation du temps. Dans les cas où 
l’on devrait, au contraire, retrancher de l’ascension droite 
moyenne l’équation du temps pour avoir l’ascension droite 
du soleil vrai, on verra de môme qu’il faudra retrancher de 
l’heure vraie le temps représenté par cette équation, pour 
avoir l’heure moyenne. On calcule donc à priori cette quantité 
périodique, pour chaque jour de l’année ; et l’on en consigne 
les valeurs dans la Connaissance des temps, h’Annuaire du Bu­
reau des longitudes de France mentionne ces résultats vis-à- 
vis de chaque date, dans une colonne intitulée : Temps moyen 
à midi vrai. On lit, par exemple, qu’au 5 mai 1869, le temps 
moyen à midi vrai est H A 56"‘ 30s : cela veut dire, qu’au mo­



ment où le soleil vrai passe au méridien, le soleil moyen n'y 
a pas encore passé ; il est seulement 11* 56m 30* du malin ; 
l’équation du temps est 3m 30*. On comprend, dès lors, com­
bien il est facile de régler les horloges publiques sur le temps 
moyen : il suffit de leur faire marquer, au moment du midi 
vrai, l’heure donnée par VAnnuaire.

En comparant les valeurs du temps moyen à midi vrai, 
pour l’année 1869, on remarque que le midi moyen précède 
le midi vrai, au 1er janvier, de 4m ; que l’écart va croissant 
jusqu’au 11 février, où il atteint 14m 30s ; qu’il décroît ensuite 
jusqu’au 14 avril, où il est 13* : ce jour-là, le midi moyen ar­
rive presque au midi vrai. Puis, c’est le midi vrai qui précède 
le midi moyen ; l’écart augmente jusqu’au 14 mai : il est 
alors de 3’’* 52’ ; puis il décroît, et redevient nul entre le 14 et 
le 15 juin. A partir de ce moment, le midi moyen précède de 
nouveau le midi vrai ; il y a un écart maximum de 6m 13* vers 
le 26 juillet. Les deux soleils passent encore ensemble au mé­
ridien le 31 août. Puis le midi vrai précède à son tour le midi 
moyen ; l’écart croit jusqu’au 2 novembre, où il atteint son 
maximum, 16m 19*. Enfin l’écart décroît, et devient nul pour 
la quatrième fois entre le 24 et le 25 décembre.

i o 3 .  M e s u r e  d e s  l o n g i t u d e s  t e r r e s t r e s  e n  t e m p s  m o y e n .  —  

Il n’est pas inutile de faire remarquer ici, en terminant ces no­
tions sur le temps moyen, que, lorsqu’on exprime la longi­
tude d’un lieu en temps, le nombre d’heures, minutes et se­
condes qui la représente est le même, soit qu’il s’agisse du 
temps moyen, soit qu’il s’agisse du temps sidéral. En effet, 
supposonsque le méridien d’un lieu fasse un angle de 15° avec 
celui de Paris, ou que sa longitude soit égale à 15° ; une étoile 
mettra une heure sidérale à passer de l’un à l’autre, et les 
horloges sidérales réglées sur cette étoile, sous les deux méri­
diens, diiféreront d’une heure sidérale. Le soleil moyen, de 
son côté, mettra un temps plus long\l*- *w-,0027378) à parcou­
rir la distance des deux méridiens, puisque son mouvement 
diurne est ralenti par son mouvement propre ; mais ce temps 
plus long sera une heure moyenne, puisqu’il met 24 heures 
moyennes à décrire uniformément l’équateur entier : les deux
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horloges réglées sur le temps moyen différeront done amsi 
d’une heure. Ainsi, on peut mesurer les longitudes avec des 
horloges réglées sur le temps moyen ; car le soleil moyen par­
court en une heure moyenne le même arc de 13° que l’étoile 
parcourt en une heure sidérale.

§ III. — DFS CADRANS SOT.A1RRS.

134. P rincipes des cadrans solaires. — Un cadran solaire 
est destiné ;\ mesurer le temps vrai. Sa construction repose 
sur les considérations qui suivent.

Concevons qu’on ait partagé la surface de la terre en 24 par­
ties égales par 24 demi-méridiens, distants de 15°, dont l’un 
est le méridien du lieu d’observation A. Soient (fig. 33) : T la 
terre, PAP' le méridien de l’observateur, PI P', P2P’, P3P', etc., 
les méridiens consécutifs. Le soleil, en vertu de son mouve­
ment diurne, traverse successivement les plans prolongés de

cesgrands cercles, dans 
le sens indiqué par la 
flèche, et revient au 
méridien de départ au 
bout d’un jour vrai. 
Lorsqu’il est dans le 
plan PAP', il est midi 
vrai : il est une heure 
vraie, deux heures 
vraies, lorsqu’il passe 
danslesplansPlP',P2P'; 
il est minuit vrai, lors­
qu’il arrive au plan 
PBP', et ainsi de suite. 
Or, si l’on imagine un 
plan tangentàla surface 

de la terre au pôle P, les plans des méridiens déterminent 
sur ce plan des droites 12P12', 1P1', 2P2’, etc., tangentes aux 
méridiens correspondants, et inclinées de 15° les unes sur 
les autres. Si, de plus, on conçoit en P une tige PH, dirigée



suivant le prolongement de l’axe PP', et portant ombre à 
l’opposé du soleil, on voit que l’ombre du style PH sera di­
rigée, à midi vrai, suivant PI2', à 1 heure vraie suivant PI', 
à 2 heures vraies suivant P2'; car, à chacune de ces épo­
ques, la trace de l’ombre sur le plan tangent sera détermi­
née par le plan contenant le soleil et la droite PH, plan qui 
n’est autre que le plan méridien correspondant. Ainsi, ce 
plan tangent, surmonté de son style PH, forme au pôle un 
cadran solaire, à l ’aide duquel on peut, à chaque instant, dé­
terminer l’heure vraie.

15o. C a d r a n  é q u a t o r i a l  ou é q u i n o x i a l . — Concevons main­
tenant qu’on transporte ce plan au point A, mais que l’on 
conserve sa direction parallèle à l’équateur, et l’orientation de 
la ligne 12PI2’; le style restant parallèle à l’axe PP', il est 
évident que son ombre tombera aux mêmes heures sur les 
mêmes lignes, à cause de la distance considérable à laquelle 
se meut le soleil. Par conséquent, pour construire en A un
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cadran solaire équatorial ou équinoxial,! (On trace sur un plan 
(fig. 54), autour d’un point O, 24 droites inclinées de 15° les 
unes sur les autres, et on leur donne les n°" 1, 2, 3...12, 1, 
2, 3... 12; puis on fixe, perpendiculairement au plan, une
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tige OH en fer. On oriente ensuite l’appareil, de manière que la 
tige soit parallèle à l’axe du monde, et que la ligne 012 soit dans 
le méridien du point A ; alors le plan est parallèle à l’équateur. 
Lorsqu’on a fixé le cadran dans cette position, il est évident 
que l’ombre du style se confond successivement avec les dif­
férentes lignes 012, 01, 02, etc., et qu’elle donne l’heure vraie 
correspondante.

l i î O .  H e m a r q u e s .  — Comme, dans nos climats, le soleil ne 
se lève pas avant 4 heures du matin, et ne se couche pas après 
8 heures du soir, on ne trace que les lignes correspondant 
aux heures comprises entre ces limites. De plus, lorsque le 
soleil est au-dessus de l’équateur céleste, c’est-à-dire depuis 
l’équinoxe de printemps jusqu’à celui d’automne, il est aussi 
au-dessus du plan du cadran, et par suite l’ombre du style 
est portée sur la face supérieure. Mais depuis l’équinoxe d’au­
tomne jusqu’à celui de printemps, le soleil, qui se meut au- 
dessous de l’équateur, n’éclaire plus la face supérieure, mais 
bien la face inférieure du cadran. Cette face doit donc porter 
les mêmes lignes horaires que la première; et le style doit être 
prolongé de ce côté, pour donner, par son ombre, les heures 
correspondantes.

1 o 7 . A u t r e s  c a d r a n s . — Le cadran équatorial est, dans nos 
climats, incliné à la fois sur l’horizon et sur la verticale. Mal­
gré la simplicité de sa construction, on préfère généralement 
le cadran horizontal ou le cadran vertical.

La construction de ces autres cadrans repose sur les mêmes 
principes. Concevons, en effet, que l’on ait adapté à un plan 
horizontal ou vertical un style parallèle à l’axe du monde; les 
plans qui, à midi vrai, à 4 heure vraie, etc., contiendront 
ce style et le soleil, ne seront autres que les 24 demi-cercles 
horaires de la figure 53 ; leurs traces sur la surface horizontale 
ou verticale du cadran seront donc les lignes sur lesquelles se 
portera l’ombre du style aux heures correspondantes. La con­
struction du cadran se réduira donc au tracé de ces lignes. 
Mais ce tracé exige les premiers éléments de la Géométrie des­
criptive; et nous renvoyons nos lecteurs, pour ces détails, à la 
note xiv, à la fin du volume.



138. M é r i d i e n n e  d u  t e m p s  m o y e n . — Le style des cadrans 
solaires est ordinairement terminé par une plaque circulaire 
percée d’un trou. Les rayons lumineux qui passent par le 
trou dessinent un point brillant au centre de l’ombre projetée 
par la plaque; ce qui rend l’observation plus précise. Or, con­
cevons qu’à l’aide d’une montre bien réglée sur le temps moyen, 
on marque chaque jour, sur le cadran, la position du point 
brillantà midi moyen : on pourra joindre ces positions succes­
sives par un trait continu, et l’on obtiendra ainsi une courbe 
en forme de 8, qui servira évidemment à la détermination du 
midi moyen. Gomme le midi moyen se confond, quatre fois 
par an, avec le midi vrai, la courbe coupe quatre fois la droite 
qui, sur le cadran, donne le midi vrai. Celte courbe se nomme 
la méridienne du temps moyen.

3 IV. —  D e l'a n n é e .'

130. A n n é e  t r o p i q u e . — On appelle année tropique l’inter­
valle de temps compris entre deux retours consécutifs du soleil 
au même équinoxe. Il est fort intéressant de connaître exac­
tement celte durée; car elle est indispensable pour régler les 
travaux de l’agriculture, les spéculations du commerce, les 
voyages lointains.

Pour déterminer la longueur de l’année tropique, il suffi­
rait, à la rigueur, de calculer avec soin, comme nous l’avons 
fait (n° 126), l’instant de l’équinoxe du printemps pour deux 
années consécutives: le temps compris entre les deux époques 
serait la durée cherchée. Mais on .n’obtiendrait pas ainsi une 
précision suffisante, et les erreurs des observations pourraient 
faire craindre une erreur d’une minute dans la longueur de 
l’année. Heureusement on possède aujourd’hui des observa­
tions d’équinoxes, faites par Lacaille et par B adley, il y a un 
siècle. On peut donc évaluer l’intervalle de temps compris 
entre deux équinoxes distants decent ans, et diviser le résultat 
par 100. L’erreur, ne provenant que des observations extrêmes, 
est la même que dans la mesure précédente; elle se trouve 
ensuite divisée par 100, et devient négligeable.
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ICO. V a l e u r s  d e  l ’a n n é e t r o p i q u e  e n  j o u r s  s i d é r a u x ,  e n  j o u r s  

s o l a i r e s  m o y e n s .  — Si, dans le calcul que nous venons d’in­
diquer, on prend pour unité le jour sidéral, on trouve que 
l’année tropique vaut 366^-,242217, ou 366J-sW-5A48m47\549.

366.242217Or, on a vu (n° d49) que : 1 *• s0‘• moy• =  1 S!<ix  . IloÜ5, 242256
en résulte que :

363 m°v-,24225G — 366-^-,242217:

cela revient à dire que l’année tropique vaut

363 i-sot-moy-,242236, ou 363J- "*• "“Wm* 48m 50* ,918.

On déduit de là que la vitesse angulaire du soleil moyen, c’est- 
à-dire l’arc décrit en un jour solaire moyen, sur l’équateur, 
est :

360° — 50", 2 
305,242256 , ou 0° 59' 8",3 (nu 149).

g V. — Dü CALENDRIER (I).

161. D é f i n i t i o n  d u  c a l e n d r i e r . — Le Calendrier est la col­
lection des préceptes que donne l’astronomie, pour faire con­
corder la durée de Vannée civile avec celle de l ’année tropique, 
et pour subdiviser cette durée en périodes correspondant 
aux variations de la température. On comprend l’importance 
d’une pareille concordance; car, le soleil se trouvant, après 
une année révolue, dans la même position par rapport à la 
terre, chaque jour d’une certaine dénomination jouira, dans 
ce système, d’une température identique (abstraction faite des 
variations dues à des causes accidentelles). Par conséquent, 
on pourra régler à l’avance l’ordre et la durée des travaux 
d’agriculture, et dire : Dans nos climats, la moisson se fait à 
telle date, la vendange à telle autre, les semailles à telle autre 
encore. On saura sur combien de jours de température 
élevée on pourra compter, à la veille d’entreprendre un long

(1) Il s’agira, dans ce paragraphe, des jours solaires moyens, qui seuls sont 
employés dans les usages de la vie.



voyage, etc. On se rendra compte enfin, d’une façon plus 
nette, de l’époque à laquelle se sont passés des événements 
antérieurs, et du temps qui s’est écoulé depuis leur accom­
plissement.

Or, cette concordance entre l’année civile et l’année astro­
nomique n’a pas été établie dès l’origine. L’année civile a dif­
féré d’abord notablement de l’année tropique; puis peu, à peu, 
des réformes sont survenues. Jules César introduisit à Rome 
une des corrections les plus importantes. Plus tard l’Église 
catholique l’adopta en la perfectionnant; et c’est elle qui a 
donné au monde le calendrier remarquable, presque univer­
sellement adopté aujourd’hui, que nous allons expliquer.

162. A n n é e  é g y p t i e n n e  ou v a g u e . — Les Égyptiens firent 
d’abord usage d’une année de 360 jours, divisée en 12 mois 
de 30 jours chacun. Plus tard, ils composèrent leur année de 
363 jours. Or, cette année, qu’on a appelée Vannée vague, était 
trop courte d’environ $ de jour; et il est facile de se rendre 
compte des inconvénients de cette discordance. Car si, par 
exemple, on choisit le moment de l’équinoxe du printemps 
pour origine, et si l’on suppose qu’il arrive au commencement 
du 21 mars d’une certaine année, le soleil, l’année suivante, 
après 363 jours révolus, ne se retrouvera pas dans l’équateur, 
et l’équinoxe n’arrivera que 6 heures après le commencement 
de l’année ; après deux années révolues, le retard sera d’un 
demi-jour; il sera d’un jour entier après quatre ans, c’est-à- 
dire que l’équinoxe n’arrivera alors qu’au commencement du 
22 mars; quatre ans après, il arrivera le 23 mars, et ainsi de 
suite. On voit donc que l’équinoxe arrivera successivement, en 
avril, en mai, etc. ; et, par suite, que la température de cette 
époque correspondra successivement à toutes les dates de l ’an­
née, dans une période de 363 fois 4 ans, ou de 1460 ans. Dans 
ce laps de temps, appelé période sothiaque, le printemps, qui 
commence à l’équinoxe vernal, arrivant de plus en plus tard, 
1 hiver, qui le précède, se prolongera dans l’année de plus en 
plus ; et les diverses saisons se succéderont à toutes les époques 
du calendrier.

165. R é f o r m e  j u l i e n n e . — Ces graves inconvénients frappé-
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rent Jules César, qui résolut d’y remédier, et qui le fit d’une 
manière assez heureuse. Il ne fallait pas songer à donner à 
l’année civile une longueur mesurée par un nombre fraction­
naire de jours, 365 jours £, par exemple; car si une année de 
ce nouveau calendrier eût commencé un certain jour à midi, 
l’année suivante eût commencé à 6 heures du soir, la suivante 
à minuit, etc. Le commencement de l'année eût donc été 
variable avec le temps : on comprend assez l’inconvénient (le 
ce système. D’un autre côté, il ne fallait pas trop s’écarter de 
la vraie durée de l’année astronomique, sous peine de voir se 
reproduire les désordres qu’on voulait supprimer. Jules César, 
aidé de Sosig'ene, astronome et mathématicien d’Alexandrie, 
résolut le problème par la méthode des intercalations. D’abord 
il décida que, pour rétablir la concordance entre l ’instant de 
l’équinoxe et sa date, l’année 708 de Rome, 46° avant J.-C., 
aurait 14 mois, et compterait 445 jours; ce fut l’année de con­
fusion. Voilà pour le passé. Pour l’avenir, la durée de l’année 
astronomique fut fixée à365j, 25. Mais, pouréviter lesfractions, 
il décida que l’année commune serait de 365 jours, et que troi- 
années communes seraient suivies d’une année de 366 jours. 
Il répartit les 365 jours entre les douze mois de l’année, dans 
la proportion que nous y trouvons encore aujourd’hui; et il 
intercala, tous les quatre ans, le jour complémentaire dans le 
mois de février, qui n’a que 28 jours.

Cette réforme fut d’abord mal comprise par les successeurs 
de César, qui, chargés de l’exécuter, crurent que l’année de 
366 jours devait revenir tous les trois ans. Il fallut que, 36 ans 
plus tard, Auguste supprimât les trois jours intercalaires qu’on 
avait introduits en trop, pour ramener l’équinoxe à sa date 
primitive.

1G4. A d o p t i o n  d e  c e t t e  r é f o k m e  p a r  l ’É g l i s e . —  Lorsqu’en 
l’an 325, le concile de Nicée se réunit pour traiter des affaires 
de l’Église, il s’occupa du calendrier; et croyant que l’inter­
calation julienne faisait concorder exactement la longueur de 
l’année civile avec celle de l’année astronomique, il adopta 
la réforme, après avoir constaté que, cette année, l’équinoxe 
du printemps arrivait le 21 mars. Il admit, en conséquence,
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que, sur quatre années consécutives, l’une compterait 366 
jours, et que ce serait celle dont le millésime serait divisible 
par 4.11 conserva aussi l’intercalation du jour complémentaire 
en février, le plaça entre le 23 et le 24 de ce mois, et fixa à ce 
jour la fêle de saint Mathias, qui tombe le 24 dans les années 
communes. Comme il avait adopté la division romaine du 
mois par les calendes, les nones et les ides, et la manière de 
compter les jours en rétrogradant, il se trouva que, le 28 février 
étant désigné sous le nom depridiè calendas Martii, le 27 sous 
celui de tertio calendas, le 24 se nommait sexto calendas, et 
le 23, septimo calendas. Pour ne pas changer la dénomination 
du 23 et des jours précédents, on nomma le jour intercalaire 
bissexto calendas. De là, sans doute, vient le nom de bissextiles 
donné aux années de 366 jours.

1G5. T r o p  g r a n d e  d u r é e  d e  l ’a n n é e  j u l i e n n e . — En adop­
tant 3631,23 pour durée de l’année astronomique, le concile la 
supposait trop longue d’environ tf,00774 ou de 11 minutes, 
puisqu’elle n’est que de 363i,24226 (n° 160). Cette différence 
devait produire à la longue, mais bien plus lentement, un effet 
contraire à l’effet produit par l’année trop courte des Égyptiens : 
c’est-à-dire que l’équinoxe devait arriver successivement aux 
dates du 20 mars, du 19 mars, etc., et reporter ainsi la tem­
pérature et l’origine du printemps dans les mois qui appar­
tenaient d’abord à la saison d’hiver. L’erreur étant de 0 ,̂00774 
par an, était, pour 100 ans, de 0;,774, et pour 400 ans, de 
3 ,̂096. Ainsi, au bout de 400 ans, l’équinoxe arrivait trois jours 
trop tôt, c’est-à-dire le 18 mars. Lorsqu’en 1382, c’est-à-dire 
1237 ans après la tenue du concile de Nicée, on s’occupa sé­
rieusement de réformer le calendrier julien, l’erreur était déjà 
de 0J,00774 X  1237, ou de 9J,72918, soit 10 jours environ : l’é ­
quinoxe du printemps arrivait le 11 mars.

IGG. R é f o r m e  g r é g o r i e n n e . — C’est le pape Grégoire XIII, 
qui, aidé d’un savant calabrais nommé Lilio, eut l’honneur 
d’exécuter la nouvelle réforme. D’abord, pour ramener les 
choses à l’état où elles étaient lors du concile de Nicée, il sup­
prima dix jours de l’année 1382; et il ordonna que le lende­
main du 4 octobre serait, non pas le 5, mais le 15 octobre. Puis,



12 8 LIVRE III. —  LE SOLEIL.

pour prévenir le retour de la même discordance, due évidem­
ment à une trop fréquente intercalation de jours, complémen­
taires, il décida qu’en 400 ans, au lieu de compter luu années 
bissextiles, on n’en compterait plus dorénavantqueOT, puisque 
cette durée comprenait environ trois jours de trop. Et voici 
comment il rattacha cette réforme à la réforme julienne. Dans 
le calendrier julien, une année est bissextile, quand son millé­
sime est divisible par 4; à ce titre, toutes les années sécu­
laires (1600,1700,1800...) le sont. Or, sur quatre années sécu­
laires consécutives, une seule a encore son millésime divisible 
par 4, après qu’on a supprimé deux zéros à sa droite; les trois 
autres donnent des nombres qui ne sont plus divisibles. Il dé­
cida, en conséquence, que ces dernières ne seraient plus bis­
sextiles. De cette manière, sur quatre années ordinaires con­
sécutives, trois sont communes, et une bissextile; et il en est 
de même pour quatre années séculaires consécutives. D’après 
cette décision, l’année 1600 a été bissextile; les années 1700, 
1800, ont été communes; il en sera de même de l’an 1900, 
mais l’année 2000 sera bissextile.

Celte réforme remarquable ne donne pas encore une con­
cordance parfaite entre les deux années : on voit qu’on ne re­
tranche pas assez, et qu’il y a encore en trop 0J, 096 en 400 ans 
ou un jour environ en 4000ans; il faudra donc retrancher un 
nouveau jour tous les 4000 ans. Cette soustraction pourra se 
faire d’après les mêmes règles que la précédente; on pourra, 
par exemple, décider que les années 4000, 8000, etc., qui res­
tent bissextiles d’après la réforme grégorienne (puisque 40, 
80,... sont divisibles par 4), cesseront de l’être, et deviendront 
années communes. Et le calendrier, ainsi réglé, pourra suf­
fire pendant longtemps pour remplir le but que l’on s’est pro­
posé.

1G7. A d o p t i o n  d e  l a  r é f o r m e  g r é g o r i e n n e . — La réforme 
dcGrégoirc XII! ne M  ras accueillie partout immédiatement. 
La France l’adopta dès le 10 décembre 1582, et les pays catho­
liques d’Allemagne en 1584; mais les protestants n’y assujet­
tirent leur calendrier qu’en 1600, et l’Angleterre qu’en 1752. 
Aujourd’hui les Russes et les Grecs sont les seuls chrétiens,
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en Europe, qui aient conservé le vieux style, ou le calendrier 
julien. Ils n’ont pas supprimé les 10 jours de l’année 1582, et 
ils ont continué àcompter comme bissextiles toutes les années 
séculaires. Or les années 1700 et 1800 ne l’ont pas été dans 
le nouveau style ; leur année commence donc aujourd’hui 
douze jours après la nôtre (dix jours pour la suppression en 
1582, et deux jours pour 1700 et 1800). Ce retard sera encore 
augmenté d’un jour après 1900. On alTiabitude, dans les corres-

16pondances avec ces peuples, d’indiquer ainsi les dates : — mars,

25 mai
 ̂  ̂ ; ce qui veut dire que notre 28 mars, notre 6 juin, cor­

respondent au 16 mars, au 25 mai des Russes ou des Grecs.
1 G 8 .  S u b d i v i s i o n s  d e  l ’a n n é e : m o i s , s e m a i n e . — L e t t r e  d o m i ­

n i c a l e ,  c y c l e  s o l a i r e . — Autrefois, en France, l’année com­
mençait le 25 mars, jour de l’Annonciation. C’est un édit de 
Charles IX, daté de 1564, qui reporta son origine au 1er jan­
vier.

L’année se partage en douze mois inégaux ; chaque groupe 
de trois mois correspond à peu près à une saison (chapi­
tre VII).

Hiver.
1. janvier.. 31 j.
2. fév. 28 ou 29 j.
3. mars. . . .  31 j.

Printemps.
4. avril__  30 j.
5. mai....... 31 j.
6. juin....... 30 j.

Été.
1. juillet.. .  31 j.
8. août......  31 j.
9. septemb. 30 j.

Automne.
10. octobre. 31 j.
11. novemb. 30 j.
1 2 . d é c e m b .  31 j .

Il y a une autre subdivision de l’année, qui est la semaine : 
elle est formée de sept jours, lundi, mardi, mercredi, jeudi, 
vendredi, samedi, dimanche. L’année commune comprend 52 
semaines et 1 jour : le nom du jour qui la commence est 
aussi le nom de celui qui la termine. Ainsi le 27 mars d’une 
année porte le même nom que le 26 mars de l’année sui­
vante, etc. De là la possibilité de construire un calendrier per­
pétuel. On remplace les noms des jours par les lettres A, B, C, 
D, E, F, G, écrites périodiquement en regard des dates respec­
tives. Si l’année commence par un jeudi, ce jour est désigné 
par la lettre A pendant toute l’année ; vendredi l’est par B, di-

9COSU. G.
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manche par D. La lettre qui indique le dimanche s’appelle 
lettre dominicale ; elle change chaque année, et rétrograde 
d’un rang, parce qu’il y a dans l’année un jour de plus que 52 
semaines. La lettre dominicale pour 1869, est G. Dans les an­
nées bissextiles, il y a 29 jours en février ; il y a donc une lettre 
dominicale pour janvier et février, et une autre (celle qui la 
précède dans l’ordre alphabétique) pour les dix autres mois. 
En 1872, les deux lettres seront successivement G et F. En 
1873, la lettre dominicale sera E.

Après sept bissextiles ou 28 ans, les lettres dominicales se 
reproduisent périodiquement. Cette période de 28 ans porte 
le nom de cycle solaire. Çe cycle a commencé l’an 9 avant J.-C. 
Pour trouver quelle est la date du cycle pour une année 
quelconque, il suffit donc d’ajouter 9 à son millésime, et de 
diviser la somme par 28; le reste est le nombre cherché. 
Ainsi pour 1869, on a 1869 + 9 ,  qui divisé par 28, donne 67 
pour quotient et 2 pour reste : donc cette année est la 2e du 
68 cycle.

1G9. N o m s  d e s  j o u r s  d e  l a  s e m a i n e  ;  l e u r  o r i g i n e . — Les 
noms des jours de la semaine sont tirés de ceux des planètes 
connues des anciens, parmi lesquelles figuraient le soleil et 
la lune. Ainsi lundi vient de la lune, mardi de Mars, mercredi 
de Mercure, jeudi de Jupiter, vendredi de Vénus, samedi de Sa­
turne ; Dimanche est le jour du Seigneur ou du soleil. Pour 
comprendre l’ordre dans lequel les noms des jours se succè­
dent, il faut remarquer d’abord que les anciens estimaient le» 
distances des sept planètes à la terre d’après la durée de leur 
révolution apparente, et qu’ils les avaient, en conséquence, 
rangées dans l’ordre des distances décroissantes qu’indique ce 
distique :

Saturnus, dein Jupiter, hinc Mars, So/que, Fenusque,
Mercurius, cai sic ultima Luna subest.

J1 faut se rappeler ensuite que leur usage était de consacrer 
chaqueheure du jouraux divinités adorées sous lesnoms de cea 
planètes. Ainsi, la l'8 heure du samedi était consacrée à Saturne, 
la 2' à Jupiter, e tc ., en suivant l’ordre ; la 8°, la 15', la 22°, se



trouvaient de même consacrées à Saturne. Par suite, la 25e ou 
la l re du lendemain, dimanche, était consacrée au soleil, en 
suivant l’ordre prescrit. Comme le soleil a le 3° rang après 
Saturne, on voit que la l re heure du surlendemain, lundi, était 
consacrée à la lune, qui vient trois rangs après le soleil ; la 
l 18 heure du mardi à Mars, celle du mercredi h Mercure, celle 
du jeudi à Jupiter, et celle du vendredi à Vénus. Chaque jour 
de la semaine reçut ainsi le nom de la divinité qui présidait à 
sa 1” heure. Et comme, en continuant cette succession, on re­
tombait sur Saturne pour la l re heure du 8e jour, sur le soleil 
pour celle du 9e, etc., on a ainsi obtenu la petite période de la 
semaine, dont nous avons conservé l’usage.

Ainsi, la révolution du soleil dans l’écliptique a réglé la du­
rée de l’année (n° 159); on verra plus loin que la révolution 
synodique de la lune a servi à former le mois ; et voici le culte 
des planètes qui a déterminé la semaine.

170. Calendrier républicain. — Lorsqu’on a fondé le nou­
veau système des poids et mesures (n° 90), on a voulu soumet­
tre la division de l’année et du jour à d’autres règles, et le ca­
lendrier républicain fut inventé. Il a vécu 14 ans. Nous n’en 
parlerons pas. Le lecteur qui serait curieux d’étudier cette 
question et celles qui se rattachent au calendrier, dans tous 
leurs détails, pourra consulter la savante notice insérée par 
Arago dans l'Annuaire du Bureau des longitudes pour 1851.
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CHAPITRE IV.

DISTANCE DU SOLEIL A LA TERRE ; SES DIMENSIONS.

Distance du soleil à la terre. — Rapport du volume du soleil à celui de la 
terre. — Rapport des masses. — Densité du soleil rapportée à la densité 
moyenne de la terre.

171 .— Nous avons, dans les chapitres précédents, constaté 
que le soleil se meut autour de la terre ; nous avons déterminé
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la nature de son orbite et la durée de sa révolution. Nous al­
lons maintenant montrer comment on peut trouver à quelle 
distance ce mouvement s’opère, et quelles sont les vraies di­
mensions de cet astre. La solution de ces nouvelles questions 
est fondée sur la mesure de la parallaxe du soleil.

§ I. —  P a r a l l a x e  d o soleil.

1 7 2 .  P arallaxe d’un astre . — On appelle en général paral­
laxe d’un astre, 
par rapport à un 
point de la sur­
face de la terre, 
l’angle sous le­
quel un observa­
teur placé dans 
l’astre verrait le 
rayon de la terre 
qui aboutit à ce 
point. Ainsi, soient 
(fig.55) O le cen­
tre de la terre que 
nous supposons 

sphérique, A le point donné de sa surface, S la position de
l’astre. Le plan 
qui passe par 
ces trois points 
coupe la surface 
de la terre sui­
vant un grand 
cercle ACI ; et, 
dans le triangle 
SOA qu’ils for­
ment, l’angle S 
est la parallaxe 
de l’astre rela­

tive au point A. On l’appelle aussi parallaxe de hauteur.
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Lorsque la droite AS, qui va du point A à l’astre, est tan­
gente au cercle O, c’est-à-dire lorsque l’astre S est à l’horizon 
(fig. 56), l’angle S se nomme la parallaxe horizontale.

On sait déjà que la parallaxe des étoiles est nulle à cause de 
leur immense éloignement; celles du soleil, de la lune, des 
planètes ne sont pas nulles, mais elles sont toujours très- 
petites.

1 7 5 . Usage de la parallaxe pour ramener les observations 
au centre de la terre — Lorsqu’on observe un astre S (fig. 55) 
d’un point A de la surface de la terre, on ne le voit pas géné­
ralement dans la même direction que si on l’observait de son 
centre O. Car, pour le point A, la distance zénithale est SAZ, 
et pour le point O elle est SOZ. Or, SOZ =  SAZ — ASO, ou SOZ 
=  SAZ — p. Ainsi le changement de direction est précisé­
ment mesuré par la parallaxe p.

Pour que les observations faites à la surface de la terre 
soient comparables entre elles, il faut les ramener à ce qu’elles 
seraient si elles étaient faites au centre du globe. Il faut donc 
corriger ces observations de la parallaxe. C’est là le principal 
usage que l’on fait des parallaxes en astronomie.

Or, le plan SOZ étant évidemment vertical, la parallaxe 
n’influe pas sur la mesure des azimuts et des ascensions 
droites; car l’astre S, vu du point A, paraît dans lemême plan 
vertical que s’il est vu du point, O, et lorsqu’il passe au méri­
dien de l’oservateur A, il passe en même temps à celui de 
l’observateur O; mais la parallaxe influe sur les hauteurs et 
les distances zénithales en sens inverse de la réfraction ; tan­
dis que celle-ci fait paraître les astres plus élevés au-dessus de 
l’horizon qu’ils ne le sont réellement, la fig. 55 montre que 
les distances zénithales, observées du point A, sont plus gran­
des que si on les observait du centre O; les hauteurs sont, 
par conséquent, plus petites dans les mêmes circonstances. 11 
résulte de là qu’à toutes les hauteurs observées à la surface 
de la terre, il faudra ajouter la parallaxe de hauteur, pour les 
ramener à ce qu’elles seraient si elles étaient mesurées du 
centre. Ainsi, en désignant par H une hauteur observée, par 
R la correction due à la réfraction, et par p la parallaxe, on
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aura H — R - f  p pour la valeur de la hauteur vraie, telle 
qu’on la mesurerait s’il n’y avait pas d’atmosphère, et si l’ob­
servateur était au centre O.

La déclinaison se déduisant de la hauteur méridienne, il 
est évident qu’elle est affectée de la môme erreur, et qu’elle 
doit subir la même correction.

En- résumé, lorsque nous aurons à mesurer la hauteur 
ou la distance zénithale du soleil, de la lune ou d’une pla­
nète, nous devrons les corriger de la réfraction et de la 
parallaxe ; et nous ne changerons rien aux mesures obtenues 
pour les azimuts ou les ascensions droites. Mais, lorsque 
jes observations s’appliqueront à une étoile, pour laquelle 
la parallaxe est nulle, la correction ne portera que sur la ré­
fraction.

Pour faire ces corrections aux hauteurs observées du soleil, 
il faudra connaître les valeurs de la parallaxe de hauteur pour 
les différentes distances zénithales de cet astre ; ces valeurs 
sont consignées dans des tables spéciales.

1 7 4 . Parallaxe du soleil. — Le procédé le plus exact que 
l’on connaisse pour mesurer la parallaxe horizontale du so­
leil repose sur l’observation du passage de Vénus sur le dis­
que de cet astre. Nous indiquerons cette méthode, lorsque 
nous parlerons de ce curieux phénomène (liv. Y, chap. II). 
Nous dirons seulement ici, qu’en l’appliquant aux derniers 
passages de 1761 et de 1769, on a trouvé 8",57 pour valeur 
moyenne de la parallaxe horizontale. Cependant une discus­
sion récente (1864) des observations du passage de 1769, faite 
par M. Laugier, porte cette parallaxe à 8",86. Ainsi, un obser­
vateur, placé dans le soleil, verrait le diamètre de la terre 
sous un angle de 17",72.

1 7 8 . T able des parallaxes du soleil. — Lorsque la paral­
laxe horizontale est connue, on en déduit, par un calcul très- 
simple de trigonométrie, la valeur de la parallaxe de hauteur 
correspondante à chaque distance zénithale méridienne du 
soleil. Mais ce calcul est relatif à la distance moyenne du so­
leil à la terre. Comme cette distance n’est pas toujours la 
même (n° 134), un autre calcul permet d’obtenir les varia-



lions correspondantes de la parallaxe (1 ), et ce sont les résul­
tats obtenus que l’on consigne dans les tables.
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§ II. —  U sage de la pa ralla xe  po ur  m e su r er  l e s  d ista nces des a str e s  a

LA TERRE.

176. Distance moyenne du soleil a la terre. — Comme la 
parallaxe horizontale du soleil est fort petite, on peut appli­
quer à la détermination de la distance de cet astre à la terre la 
méthode et la formule que nous avons données (n° 51) pour 
mesurer la distance des étoiles. En désignant par d la dis­
tance moyenne cherchée, par r le rayon de la terre, et en 
adoptant la nouvelle mesure de la parallaxe donnée par Al. Lau- 
yier, on a :

. 206265d — — r, ou d =  23280 r.
8,86 ’

Cette distance moyenne est le demi-grand axe de l’orbite. Par 
conséquent, la distance périgée est d (1 — e) ou 22890 r, et la 
distance apogée est d (1 -f- e), ou 23671 r (n° 141).

177. Remarque. — Comme la parallaxe du soleil n’est guère 
connue qu’à 0 ”,04 près, on voit que l’erreur relative sur le di­

viseur est de près de — l’erreur relative du dividende est

beaucoup plus petite, et peut être négligée; celle du quotient

est donc 1
220 ’

L’erreur absolue du quotient est, par suite 1
’  220

de 23280, ou environ 106 unités. Ainsi la distance du soleil à 
la terre n’est connue qu’à 106 l'ayons terrestres près. C’est 
pourquoi nous disons, en nombres ronds, que cette distance 
vaut 23300 fois le rayon de la terre, ce rayon étant, d’ailleurs, 
celui de l’équateur, r — 6377398“.

Si l’on convertit celte distance en lieues de poste de 4 kilo­
mètres. on trouve 37116000 lieues, avec une incertitude d cn-

(1) Voir la note \v , à la fin du volumO.
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viron 168000 lieues. On se fera une idée de ce grand nombre, 
en remarquant qu’un wagon qui ferait 50 kilomètres par 
heure, ou 1200 kil. par jour, ou 438000 kil. par an, ferait 
en 100 ans 43800000 kil., ou 10950000 lieues de poste, et 
mettrait par conséquent trois siècles et demi pour atteindre 
le soleil !

§ III. — D im ensions du so le il .

178. Mesure du rayon du soleil. — Il est facile maintenant 
de mesurer le rayon du soleil. En effet, la parallaxe du soleil 
étant l’angle sous lequel un observateur placé dans cet astre 
verrait le rayon de la terre, on peut dire qu’elle est la valeur 
d u demi-diamètre apparent delà terre, vu du soleil. On connaît 
d’ailleurs le demi-diamètre apparent du soleil, vu de la terre ; 
il est, en moyenne, de 16' 3", ou 963" (n° 132). Or, les demi- 
diamètres réels des deux astres, étant ainsi vus à la même' 
distance, sous des angles très-petits, peuvent être confondus 
avec les arcs qu’ils sous-tendent ; ils peuvent donc être assi­
milés à deux arcs décrits avec le même rayon d, et ils sont 
proportionnels aux angles au centre, c’est-à-dire aux demi- 
diamètres apparents. Donc, en désignant par R le rayon du 
soleil, on a :

R 963 963
_ = = r ^ >  ou R = - ^ 1- =  108,506 r.r  8,86 8,86

avec une incertitude égale à un rayon terrestre.
On serait arrivé au même résultat, en suivant la méthode

géométrique déjà plusieurs fois employée. Car l’arc de 963'
(demi-diamètre apparent), sous-tendu à la distance d par le

. . . Ttd X  963 d X  963rayon du soleil, a pour longueur-— g- ou , ou, en

23280 X  963remplaçant d par sa valeur, — r• Mais cet arc se con­

fond avec le rayon R. Donc

23280 X  963R
206265 r =  108,556 r.
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Ges deux méthodes conduisent à la même formule; car, d’a­
près le paragraphe précédent, on a :

206205 23280 1
8,86 '=  23280’ d ou 206265 =  8^86’

et, par suite,

A insi, le rayon du soleil vaut environ t08 fois le rayon de la tei're. 
Or, la distance de la lune à la (erre n’est, comme on le verra, 
que de 60 rayons terrestres ; donc, si le centre du soleil coïn­
cidait avec celui de la terre, la surface de cet astre enveloppe­
rait l’orbite dans laquelle se meut la lune, et s’étendrait en­
core presque aussi loin par delà ce satellite.

1 7 9 . Surface et volume du soleil. — Comme les surfaces 
S et s des deux astres sont dans le rapport des carrés des 
rayons, on a :

S =  108,5562. s, ou S =  11784 s.

Et, comme les volumes V et v sont dans le rapport des cubes 
des rayons, on a :

Y =  108, 556 3. v, ou V =  1279267 v.

Ainsi, le soleil est près de 1300000 fois plus gros que la terre.

§ IV. —  M asse e t  d e s s it é  du s o l e il .

1 8 0 . Masse d’un corps. — Lorsque l’on fait agir séparément 
deux forces constantes F, F , sur une même corps en repos, pen­
dant un même temps, ces forces lui impriment, en général, 
des vitesses différentes v et v’. On démontre, en mécanique, 
que les deux forces sont proportionelles aux vitesses qu'elles pro­
duisent. Ainsi, l’on a :

F v
F' v'

On tire de là :
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F _  F
v v' ’

c’est-à-dire que le rapport de l’intensité d'une force à la vitesse 
qu’elle imprime à un corps est constant, et ne dépend que de la 
nature du corps. Ce rapport est ce qu’on nomme la masse du 
corps. Par exemple, un corps, dont le poids est p kilogrammes, 
tombe dans le vide, et acquiert, dans la première seconde de 
sa chute, une vitesse g = 9 “,80896; en désignant par m la 
masse de ce corps, on a :

p -m — d ou p =  mg.

Comme la vitesse g est la même pour tous les corps, dans le 
même lieu, à la surface de ,1a terre, leurs masses sont propor­
tionnelles d leurs poids.

I S I .M asseuusoleil. —Iln’est pas possible, onle comprend 
aisément, de comparer de cette manière les masses des corps 
célestes, et de déterminer ainsi, par exemple, le rapport de la 
masse du soleil à la masse de la terre. Mais la loi de l’attraction 
universelle (livre V, cli. 1) permet de résoudre ce problème. 
En effet, elle démontre que deux corps célestes, placés à la 
même distance d’un troisième corps, l’attirent avec des forces 
proportionnelles à leurs masses. Mais ces forces sont, en 
même temps, proportionnelles aux vitesses qu’elles lui im­
priment pendant le même temps (n° 180). Donc le rapport 
des masses est égal au rapport de ces vitesses. Il ne sera pas 
même nécessaire de présenter le même corps à l’attraction 
des masses dont il s’agit; car tous les corps, quelles que soient 
leur masse et leur nature, acquièrent la même vitesse en 
tombant d’une même distance vers un même astre.

Il suffira donc, pour mesurer le rapport des masses du soleil 
et de la terre, de mesurer les vitesses qu’acquièrent les corps 
en tombant, pendant une seconde, sur le soleil et sur la terre, 
pourvu que les distances du corps qui tombe aux centres de 
gravité des deux astres soient les mêmes. On pourra, d’ailleurs, 
substituer à ces vitesses les espaces parcourus, en une seconde,
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dans les mômes circonstances; <;ar on sait quecesespacessont 
la moitié des vitesses acquises. Nous ne ferons pas ici les cal­
culs dont nous parlons, et nous renverrons nos lecteurs à la 
note xvi, où ils sont exposés en détail. Nous nous contente­
rons d’en donner le résultat.

On prend ordinairement pour unité la masse de la terre ; et, 
en désignant par M la masse du soleil, on trouve M =  324479. 
La masse du soleil vaut 324479 fois celle de la terre.

1 8 2 . P esanteur sur le soleil. — Si le soleil avait le même 
rayon r que la terre, un corps placé à sa surface pèserait 
324479 fois plus que sur notre globe, et y tomberait 324479 fois 
plus vite, puisque l’attraction est proportionnelle à la masse 
du corps attirant. Mais lerayon dusoleil vaut 108,556 r ; la dis­
tance d’un point de la surface au centre étant ainsi 108,556 fois 
plus grande, l’attraction, et, par suite, le poids et la vitesse de

324479chute sont 108,5562 fois plusfaibles et ne valent que . ,, ■ ,108,5562
ou environ 27,474 par rapport à notre globe. Ainsi, un corps 
qui pèse un kilogramme sur la terre pèserait à peu près 27,474 ki­
logrammes sur le soleil ; et le pendule qui battrait la seconde sur 
cet astre devrait avoir environ 27m,474 de longueur.

1 8 5 . Densité moyenne dusoleil. — La densité d’un corps 
homogène est la masse plus ou moins grande que contient 
l’unité de volume de ce corps. En désignant par D la densité 
du corps dont le volume est V, et dont la masse est M, on a

M =  VD, d’où D =  ̂ .  Lorsque le corps n’est pas homogène,

M . .ce rapport — ne peut plus indiquer que la densité moyenne.

Comme nous avons déjà pris la masse de la terre pour unité,
nous prendrons aussi pour unité sa densité moyenne ; par suite,
son volume sera l’unité du volume. Le volume du soleil est

, 324479
alors 108,5563 (n° 179), et sa densité moyenne D — =

0,253. Ainsi, la densité moyenne dusoleiln’cst guère plus du quart 
de celle de la terre. Or, celle-ci est, d’après Cavendish, 5,48,



l’unité étant la densité de l’eau. Donc celle du soleil est 
0,253x 5,48, ou 1,39 environ.

184. Remarques. — Qui ne serait émerveillé, en réfléchis­
sant aux résultats que nous venons de consigner dans ce cha­
pitre ? La mesure de la distance du soleil à la terre, du rayon 
et du volume de cet astre, de sa masse et de sa densité, paraît, 
au premier abord, un problème à tout jamais inabordable. Les 
personnes étrangères à l’astronomie ne comprennent pas aisé­
ment qu’il soit possible d’évaluer à distance des éléments que 
nous ne saurions atteindre. Et cependant, lorsqu’on étudie les 
méthodes que nous venons d’exposer, elles semblent si sim­
ples et si sûres à la fois, que l’on ne conçoit pas le moindre 
doute sur les résultats qu'elles ont fournis.

On se figure difficilementaussila masse énorme que possède 
le soleil. Elle vaut 324479 fois celle de la terre, c’est-à-dire 
qu’elle pèserait, dans les mêmes circonstances, 324479 fois 
autant que notre globe. Or, si l’on calcule le poids de ce dernier 
par les procédés ordinaires de la physique, on trouve qu’il fau­
drait dix billions d’attelages composés chacun de dix billions 
de chevaux, pour traîner cette masse sur un sol semblable à 
celui sur lequel roulent nos voilures.il en faudrait donc 324479 
fois plus pour traîner le soleil. Nous sommes bien loin, on le 
voit, des notions poétiques de la mythologie, qui n’accordait 
au char de cetastre qu’un attelage de quatre chevaux pour ac­
complir sa révolution diurne ! C’est ainsi que la vérité, telle 
que l’ont découverte les astronomes modernes, se présente à 
notre esprit sous un aspect bien autrement grandiose que les 
conceptions les plus brillantes que l’imagination des anciens 
lui avait substituées dans son ignorance !
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CHAPITRE V.

TACHES DU SOLEIL. —  ROTATION DU SOLEIL SUR LUI-MÊME. — 
SA CONSTITUTION. — LUMIÈRE ZODIACALE.

§ I. — R otation  du so l e il  Sun l u i- mêm e .

1 8 5 . Taches du soleil. — Lorsqu’on veut étudier la surface 
du soleil, on emploie une lunette dont l’oculaire est recouvert 
d’un verre coloré d’une teinte très-foncée, pour adoucir l’éclat 
et lachaleur de ses rayons. Si l’on consacre chaque jourquelque 
temps àcette étude, on y remarque presque toujours des facules, 
espaces plus lumineux que le reste du disque, et des taches 
noires irrégulières, entourées d’une pénombre grisâtre, 
et dont les contours sont très-nets. Le nombre des taches, 
leur position, leur forme, sont extrêmement variables. Il y 
en a qui ont une grandeur considérable; celle qu'Herschel 
observa, en 1779, devait, d’après ses dimensions apparentes, 
avoir 19000 lieues de largeur. Il y a d’ailleurs des époques 
où l’on en voit beaucoup, d’autres où l’on n’en voit pas du 
tout.

1 8 6 . Mouvement des taches. — Les taches apparaissent, en 
général, sur le bord oriental du soleil, à gauche de l ’obser­
vateur ; elles semblent toutes se déplacer, chaque jour, sur son 
disque, en allant de l’est à l’ouest, ou de gauche à droite ; leur 
vitesse croît jusqu’au 
milieu du disque, et 
décroît ensuite ; e t , 
après avoir décrit des 
lignes droites paral­
lèles, ou des demi- 
ellipses très-aplaties 
dont la convexité est 
tournée, pour toutes, vers la même région (flg. 57), elles



disparaissent lorsqu’elles ont atteint le bord occidental. Plu­
sieurs d’entre elles naissent subitement en un point du dis­
que; d’autres s’évanouissent pendant leur mouvement sur 
la partie visible du soleil; d’autres, après avoir disparu au 
bord occidental, reparaissent plus tard au bord opposé, 
et font ainsi quelques révolutions complètes avant de se 
dissoudre; d’autres, enfin, après avoir décrit leur courbe 
entière, ne reviennent plus, et l’on est fondé à croire 
qu’elles se sent dissipées sur la face, invisible pour nous, du 
soleil.

187. Étude du mouvement des taciies. —  Pour étudier ce 
mouvement, on mesure chaque jour, à l’aide de la machine 
parallatique, la différence des ascensions droites de la tache 
et de l’un des bords du soleil, puis la difîéreuce des déclinai­
sons ; et l’on conclut, de la valeur connue du demi-diamètre 
apparent, les différences d’ascension droite etde déclinaison de 
la tache et du centre du disque. Le calcul (note i) permet 
alors d’en déduire la différence des longitudes des deux points 
et la latitude de la tache. Comme ces valeurs sont des arcs 
très-petits, on peut les considérer comme des lignes droites; 
et, pour construire la position de la tache sur le disque ACB 
du soleil (fig. 58), on mène le diamètre AB qui représente la

trace de l’écliptique sur ce 
disque, et l’on divise ce dia­
mètre en autant de parties 
égales qu’il y a de secondes 
dans le diamètre apparent ob­
servé; on porte sur AB une 
longueur OP égale à la diifé- 
rence des longitudes, et sur 
une perpendiculaire à AB 
une longueur PT, égale à la 
latitude de la tache : T est la 

position de cette tache. On peut ainsi construire par points 
le lieu de ses positions T, T', T", etc. ; et l’on trouve un arc 
d’ellipse, qui est la projection orthographique de la courbe 
qu’elle décrit, projection exécutée sur un plan perpendiculaire
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au rayon visuel qui va au centre du soleil. On reconnaît, en 
outre, que toutes les taches que l’on peut observer en même 
temps décrivent des courbes semblables et parallèles. On 
reconnaît enfin que toutes celles qui achèvent leur révo­
lution sans se dissoudre reviennent à la même position ap­
parente au bout du même temps, qui est 27 jours et un tiers 
environ.

188. R otation du soleil sur lui- même. — Si l’on applique le 
calcul aux faits que nous venons de signaler (1), on reconnaît 
que le soleil a un mouvement uniforme de rotation sur lui-même, 
analogue à celui qui anime la terre (liv. I, chap. m) ; que 
l'axe de rotation fait un angle de 82° 50' 48" avec le plan de 
l'écliptique, et que le plan de l'équateur solaire {plan perpen­
diculaire à l'axe) coupe celui de l’écliptique suivant une droite 
{ligne des nœuds) qui fait, avec la ligne des équinoxes, un angle 
de 80° 21'. La durée réelle de la rotation est 2a; 12A, d’après les 
observations de M. Laugier. Le sens du mouvement est direct, 
c’est-à-dire que, si un observateur se place, par la pensée, 
le long de l’axe, les pieds sur l’équateur solaire, et la tête dans 
l’hémisphère boréal, il voit les taches se déplacer de sa droite 
vers sa gauche. Les taches ne se rencontrent jamais dans le 
voisinage des pôles du soleil; elles sont comprises dans une 
zone qui s’étend à 30° environ, de part et d’autre de l’équa­
teur.

Il est important de remarquer la différence qui existe entre 
la durée apparente (27; J) de la révolution d’une tache et la 
durée réelle (2ÿ j) du mouvement de rotation du soleil. On 
peut, d’ailleurs, se rendre compte de cette différence sans 
calcul et reconnaître aussi facilement le sens du mouvement. 
Supposons, en effet, pour plus de clarté, que le plan de l’é­
quateur solaire se confonde avec le plan de l ’écliptique, c’est- 
à-dire que le soleil tourne autour d’un axe perpendiculaire à 
ce dernier plan. Soit SS'S".... (fig. 59) l’orbite que le soleil 
décrit, en un an, autour de la terre, dans le sens direct. Si S 
est la position de l’astre à une certaine époque, le rayon vec-

(l)Voir la note xvn, à la fin du volume.



teur TS détermine, sur sa surface, un point C, qui nous parait 
être le centre du disque. Supposons qu’à ce moment une tache 
occupe cette position centrale. Lorsque, au bout d’un certain 
temps, le soleil sera venu en S', le centre G' du disque sera 
donné par le rayon TS'; si le soleil n’a pas tourné sur lui- 
même, c’est-à-dire si son rayon SC s’est transporté parallèle­
ment à lui-même en S'C, la tache C, immobile en réalité sur la 
surface, aura paru aller de C' en C ; elle aura donc paru dé­
crire, dans le sens rétrograde, un arc C'C, semblable à l’arc SS' 
décrit par le soleil. Pour que la tache paraisse toujours occu­
per sa position centrale, il faut que le point C se trouve en C'; 
ce qui exige que le soleil tourne sur lui-même, dans le sens di­

rect, d’un angle 
CSG' égal à 
l’angle STS', 
qtii mesure sa 

translation 
dans le même 
temps ; et pour 
qu’elle paraisse 
se mouvoir 
dans le sens 
direct, comme 
le constatent 
les observa­
tions, il faut 
que le mouve­
ment de rota­

tion du soleil dans ce sens soit plus rapide que son mouve­
ment de translation. Ainsi, le soleil tourne sur lui-même, 
dans le sens direct, avec une vitesse angulaire plus grande 
que celle de son mouvement annuel.

Or, en 27; *, la tache C a paru reprendre sa position cen­
trale. Si le soleil est en S', au bout de ce temps, la tache 
est en C' ; et elle a décrit, en sens contraire de la flèche, une 
circonférence entière augmentée de l'arc CC', tandis que le so­
leil a décrit l’arc SS'. Mais l’arc CG', ou l’arc égal SS', est le
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mouvement angulaire du soleil en 27̂ ' |  ; en le supposant uni­
forme, pour plus de simplicité, on peut le calculer, et on le

27,33trouve égal à (3C0° — 50",2) X  : ou à peu près à363,242236
27°. Si on le désigne par a, on voit que la tache a employé 
27J I à parcourir 360° +  a : donc elle aura mis, à parcourir 
360° seulement, ou à faire une révolution, un temps égal 

360°à 27̂ ' J X  . ,^ o ■■■■. C’est ce nombre, plus petit que27j |  qui

mesure, d’après ce calcul approximatif, la durée de la rota­
tion du soleil.

189. D écouverte de la rotation du soleil. — La découverte 
des taches du soleil ne remonte qu’à l’armée 1611. Elle est un 
des premiers résultats de l’invention des télescopes. Plusieurs 
savants, Fabricius, Galilée, Schneider, paraissent l’avoir faite 
en même temps. Cependant un examenapprofondi des pièces 
relatives à cette question a porté Arago à conclure en faveur 
de Fabricius.

Ce sont les taches qui ont conduit à la connaissance de la 
rotation du soleil. La découverte de ce phénomène important 
appartient aussi à Fabricius, qui a, le premier, décrit et expli­
qué la révolution des taches. Cependant Jordan Bruno avait 
soupçonné la rotation du soleil. Képler, de son côté, dans son 
immortel ouvrage sur les mouvements de Mars, dit : « Le so­
leil est magnétique ; il tourne sur lui-même. » Cet illustre as­
tronome avait ainsi devancé l’observation.

On peut lire, sur cette question, la notice d’Arago sur les 
travaux d’Herschel, insérée dans l’Annuaire du Bureau des lon­
gitudes pour 1842.

g II. —  C o n s t i t u t i o n p h y s i q u e  d u  s o l eil (1).

190. N ature gazeuse des couches extérieures de la surface du soleil. 
— Nous avons déterminé, avec une précision suffisante, la distance à la terre, 
les dimensions, la masse, la densité moyenne, la rotation du soleil. Mais la 
science ne nous apprend presque rien sur sa constitution physique ; et nous 
sommes réduits à des conjectures plus ou moins probables sur ce sujet.

(I) Ce paragraphe et le suivant ont été supprimés dans le nouveau programme officiel, 
COSM. G*
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Si l’on réfléchit sur la faible valeur de la densité moyenne du soleil, et si 
l’on remarque que cette densité ne doit pas être uniforme, mais qu’elle doit 
aller en décroissant du centre à la surface, à cause de l’énorne pression que 
doivent supporter les couches intérieures, on est amené h penser que les 
couches extérieures ont une densité très-inférieure à celle que nous avons 
évaluée, et qu’elles sont à l’état gazeux. La chaleur énorme qui règne à la 
surface de l’astre, et dont nous ressentons les efl'ets à 37 millons de lieues 
de distance, rend cette conjecture plus probable. Enfin, la facilité avec la­
quelle les taches du soleil se forment,se modifient et se dissolvent en quel­
ques jours, nous fait présumer encore que ces mouvements considérables 
doivent s’exécuter au sein d’un milieu peu résistant, tel qu’un gaz. 11 y a 
donc toute raison de croire que les couches extérieures de l'astre forment une 
atmosphère incandescente.

On peut, d’ailleurs, confirmer ces conjectures par une preuve directe, 
due hune belle expérience de F. Arago. L’illustre directeur de l’Observa­
toire de Paris avait remarqué, en effet, que, lorsqu’on regarde un corps 
solide ou liquide avec un oculaire biréfringent, si la lunette est dirigée nor­
malement à la surface du corps, les deux images sont incolores; et si elle 
est dirigée obliquement, les deux images ont des couleurs complémentaires. 
Mais, pour un gaz incandescent, tel que la flamme d’une lampe, quel que 
soit l’angle sous lequel sont dirigés les rayons visuels, les deux images ont 
toujours la même teinte. Or, c’est ce qui a lieu quand on regarde le soleil. 
Si l’on observe son centre, les rayons visuels sont normaux à sa surface ; si 
l’on observe ses bords, ils sont obliques ; et, dans tous les cas, les deux 
images présentent la même teinte. Il faut en conclure que la surface exté­
rieure du soleil est une substance gazeuse.

191. H ypothèse d 'H erschel. — Herschol, pour expliquer la formation des 
taches, a supposé que le soleil est composé d'un noyau solide, opaque et 
obscur, et de plusieurs atmosphères superposées. La première atmosphère, 
s’appuyant sur le noyau, supporterait une couche de nuages doués du pouvoir 
réflecteur ; et cette couche serait envelopppée h son tour par l’atmosphère 
extérieure incandescente. Les taches seraient produites par des éruptions 
volcaniques de matières gazeuses, parties du noyau central, lesquelles, en 
entr’ouvant la couche des nuages et les atmosphères, nous permettraient 
d’apercevoir ce noyau obscur. La pénombre qui entoure une tache serait due 
h l’enveloppe nuageuse, qui n’est pas lumineuse par elle-même, mais qui 
réfléchit vers nous la lumière de l’atmosphère extérieure. Mais, nous le ré­
pétons, ce ne sont là que des hypothèses, qui peuvent rendre compte à peu 
près des apparences, mais qui ne sont pas assez probables pour être sérieu­
sement admises. Il y a, d’ailleurs, des faits qu’elles n’expliquent pas : telle 
est, par exemple, cette circonstance, que les taches se montrent toujours 
dans la région équatoriale, et ne se rencontrent jamais dans le voisinage des 
pôles.
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§ III. —  L u m i è r e  z o d i a c a l e .

192. — La lumière zodiacale est une auréole lumineuse qui accompagne le 
soleil, et qu’on observe dans nos climats, le soir à l’ouest, après la brune 
en mars et avril, ou le matin, à l’est, avant l’aurore, en septembre et 
octobre. Sa lueur est très-faible, et 
n’empêche pas de voir les plus petites 
étoiles à travers son épaisseur. Elle af­
fecte la forme d’une lentille très-aplatie 
ifig. CO), placée obliquement sur l’ho­
rizon ; sa base offre une largeur de 20 à 
30 dégrés, et elle s’élève quelquefois 
jusqu'à une hauteur de 50 degrés. Sa 
direction générale est celle de l’éclip­
tique ; elle est par conséquent couchée sur le zodiaque, et c’est de là que lui 
vient son nom.

On ignore complètement les causes do cette lueur. Les conjectures qu’on 
a faites sur sa nature n’ont rien de bien probable ; et nous n’avons pas à les 
mentionner ici.

On peut encore consulter, sur cette question, la notice déjà citée d’Arago 
sur les travaux d’Herschel.

CHAPITRE VI

DE l ’i NÉGAIITÉ DES JOURS ET DES NUITS.

Du jour et de la nuit en un lieu déterminé de la terre, et de leur durée à 
diverses époques de l’année. — Crépuscules.

1 9 3 .— Revenons maintenant sur la terre, et examinons 
comment le soleil distribue la lumière aux différents points de 
sa surface, aux diverses époques de l’année.

Le mot jour, quand on l’oppose au mot nuit, désigne l’in­
tervalle de temps compris entre le lever et le coucher du so­
leil. La nuit est le temps qui s’écoule depuis son coucherjus- 
qu’à son lever. Un jour et une nuit forment ensemble le jour 
solaire, qui a toujours 24 heures.
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§  I .  PRINCIPES p o u r  l ’e x p l ic a t io n  d e  l’ in é g a l it é  d e s  jo u r s  e t  d e s  n u it s .

4 9 4 .  COMMENT ON PEUT COMPARER LE SOLEIL A UNE ÉTOILE QUI 
DÉCRIRAIT CHAQUE JOUR UN NOUVEAU PARALLÈLE. — Le Soleil, en
vertu de son mouvement propre combiné avec le mouvement 
diurne, vous paraît décrire, sur la sphère céleste, une courbe en 
spirale comprise entre les deux tropiques. Car, le jour de l’é—

T  sur l’écliptique ; il a donc décrit, dans l’intervalle, dans 
le sens indiqué par la flèche, une courbe TIKS qui, partant 
de T , aboutit en S. Pendant le jour suivant, il a décrit une 
seconde spire S1'K.'S" qui, commençant au points, aboutit en 
S’ ; et ainsi de suite.

Or, ces spires étant très-grandes par rapport à l’arc qui me­
sure le déplacement de l’astre sur l’écliptique, on peut, sans 
inconvénient pour les explications que nous allons donner, les 
considérer comme des parallèles célestes, c’est-à-dire supposer 
que, le jour de l’équinoxe vernal, le soleil décrit réellement 
l’équateur ; que, le jour suivant, il décrit un parallèle boréal 
fort voisin de ce grand cercle ; que, chaque jour, il parcourt 
ainsi un parallèle de plus en plus éloigné ; puis, qu’au solstice 
d’été il décrit le tropique du Cancer ; que, revenant ensuite 
sur ses pas, il décrit de nouveau les parallèles compris entre 
le tropique et l’équateur, et que, se rapprochant insensible-

Fig. 61.

quinoxe du printemps, 
par exemple, au moment 
où son centre se trouve 
dans l’équateur au point 
T  (flg. 61) , s’il n’avait 
pas de mouvement pro­
pre, il décrirait l’équa­
teur, comme le fait une 
étoile équatoriale, et il re­
viendrait en T  après 24 
heures sidérales ; mais le 
lendemain, il se trouve en 
S, à un degré environ de



ment de ce grand cercle, il l’atteint et le décrit de nouveau, 
lors de l’équinoxe d’automne ; puis, qu’à partir de ce moment, 
il parcourt les divers parallèles de l’hémisphère austral, jus­
qu’au tropique du Capricorne; et, enfin, qu’après avoir par­
couru ce dernier cercle le jour du solstice d’hiver, il décrit 
de nouveau les mômes parallèles dans l’ordre inverse, pour 
se retrouver dans l’équateur à l’équinoxe du printemps.

1 9 3 . Comment l’horizon d’un lieu  coupe ces divers parallè­
l e s . — Nous pouvons aussi, sans erreur appréciable, supposer 
que l’horizon du lieu d’observation, au lieu d’étre tangent à la 
surface de la terre, soit mené par son centre perpendiculai­
rement à la verticale de ce lieu, car la grande distance du so­
leil rend l’erreur presque insensible. En conséquence, soient 
pap', PZP' (fig. 62), les sphères terrestre et céleste concentri­
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ques ; soit pep' e' le méridien du lieu, qui détermine sur la 
sphère céleste le grand cercle PEP'E' ; il suffira, pour tracer 
l’horizon d’un lieu a, de mener sa verticale a l, et de tracer 
par le centre un plan HH' perpendiculaire à cette droite.

Soient CC\ TC, T'C', les traces de l’écliptique et des tropi­
ques sur le plan du grand cercle céleste; et soient DP, D'F, les 
traces des cercles polaires. Les tropiques et les cercles polai­



res terrestres seront représentés par te, t'e, df, d'f'. On voit 
que, si l’observateur est en e sur l’équateur terrestre, son ho­
rizon est PP' ; il partage en deux parties égales l’équateur cé­
leste, tous les parallèles et les tropiques que le soleil décrit 
successivement. Si l’observateur est en a dans la zone torride, 
son horizon HH' coupe encore l’équateur en deux parties éga­
les ; mais il coupe les autres parallèles en deux parties d’au­
tant plus inégales qu’ils sont plus éloignés de l’équateur. A 
mesure que l’observateur s’éloigne de l’équateur, et vient en 
b, son horizon KK’ s’incline sur ce grand cercle, et la diffé­
rence des segments qu’il détermine sur les parallèles célestes 
augmente de plus en plus; mais, en chaque point de la zone 
torride et de la zone tempérée, l’horizon coupe tous ces pa­
rallèles. Lorsque l’observateur se trouve en d sur le cercle po­
laire, son horizon est TT', il est tangent aux deux tropiques ; 
et, si l’observateur s’avance en i dans la zone glaciale, son 
horizon NN', s’inclinant encore, ne coupe plus que ceux des 
parallèles qui sont les plus voisins de l’équateur, et laisse 
les autres tout entiers d’un même côté. Enfin pour le pôle 
même p, l’horizon est l’équateur EE', auquel tous les cercles 
décrits successivement par le soleil sont parallèles.

196. Construction de cette intersection . — On peut con-
trsuire facilement le pa­
rallèle que décrit le soleil 
à une époque donnée de 
l’année, et la partie de ce 
cercle qui est au-dessus de 
l’horizon d’un lieu déter­
miné. En effet, soient 
(fig. 63) T le centre de la 
sphère céleste, PEE' le 
grand cercle, intersection 
de cette sphère par le mé­
ridien de l’observateur, 
TZ la verticale et HH' l’hc- 

rizon du lieu. Soient, en outre, EE'et QQ'les traces de l’é­
quateur et du parallèle que décrit le soleil à l’époque con-

150 LIVRE III. —  LE SOLEIL.



sidérée : ces deux plans sont, ainsi que l’horizon, perpen­
diculaires au méridien, et leurs intersections avec l’horizon 
sont aussi perpendiculaires au méridien. Or, le parallèle est 
un cercle dont QQ' est le diamètre, et l’intersection de ce cer­
cle avec l’horizon est une corde projetée en R. Si donc on fait 
tourner ce cercle autour de 00', de manière à le rabattre sur 
le plan de la ligure, il prendra la position QVQ’V', et la corde 
deviendra la droite VKV' perpendiculaire sur QQ'. La partie 
VQ'V' du cercle sera la partie située au-dessus de l’horizon, et 
la partie VQV' sera celle qui est située au-dessous (1).

S II. —■ INÉGALITÉ DES JOURS ET DES NUITS, POUR UN MÊME LIEU, A 
DIFFÉRENTES ÉPOQUES DE L’ANNÉE.

Î 0 7 .  D urée du jour et  de la nuit aux diverses époques de 
l ’année. — Il nous est facile maintenant, en nous appuyant 
sur les considérations qui précèdent, de rendre compte de 
l’inégalité des jours et des nuits, en un lieu déterminé, aux di­
verses époques de l’année. En effet, le mouvement diurne du 
soleil peut être, dans l’intervalle de 2-i heures, considéré 
comme uniforme ; par suite, la durée de la journée aura na­
turellement pour mesure, en un lieu donné, la longueur de 
l’arc du parallèle que l’astre décrit au-dessus de l’horizon du 
lieu, et la durée de lanuit, celle de l’arc qu’il décrit au-dessous 
de l’horizon; et l’on pourra aisément construire et calculer le 
rapport du jour à la nuit, d’après les principes que nous avons 
donnés (n°* 195, 196).

Ainsi, 1° pour un habitant de l'équateur terrestre (fig. 62), 
l ’horizon PP' partage en deux parties égales l’équateur céleste 
et tous les parallèles que décrit successivement le soleil ; donc 
le jour est égal à la nuit, à toutes les époques de l’année. 
C’est pour cela que l’équateur terrestre prend le nom de ligne 
équinoxiale.

2° Pour l’habitant de la zone torride boréale, au point a, par 
exemple, l’horizon HH' partage encore l’équateur céleste en 
deux parties égales, et le jour est égal è la nuit au moment de

(1) Voir lu  n o te  xvm, à la fin du volume.
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chaque équinoxe. Mais, lorsque le soleil s’élève au-dessus de 
l’équaleur, les arcs de parallèle situés au-dessus de l’horizon 
étant plus grands que ceux qui sont situés au-dessous, le jour 
est plus long que la nuit, et la différence augmente, à mesure 
que l’astre se rapproche du tropique du Cancer. L’époque du 
solstice d’été correspond au jour le plus long et à la nuit la 
plus courte. Puis le soleil, revenant vers l’équateur, parcourt 
les mêmes parallèles dans un ordre inverse; le jour diminue, 
en passant par les mêmes variations, et la nuit augmente. Ils 
redeviennent égaux au moment de l’équinoxe d’automne. Puis 
le soleil, passant dans l’hémisphère austral, décrit des paral­
lèles dont la plus grande partie est sous l’horizon ; le jour est 
plus court que la nuit, et continue à diminuer jusqu’au sol­
stice d’hiver. A celte époque, la symétrie de la ligure indique 
que le jour le plus court est égal en durée à la plus courte 
nuit du solstice d’été, et vice versa. A partir de ce moment, le 
soleil remonte vers l’équateur ; le jour augmente, et la nuit 
diminue, en passant par les mêmes phases, et ils se retrouvent 
égaux au moment de l’équinoxe du printemps.

3° Le mouvement diurne du soleil produit des inégalités 
analogues pour l’habitant de la zone tempérée boréale ; pour 
lui, le jour est égal à la nuit aux équinoxes, plus long qu’elle 
de l’équinoxe du printemps àcelui d’automne, plus court, 

au contraire, de ce dernier équinoxe au premier. Le plus 
long jour a lieu au solstice d’été, le plus court au solstice d’hi­
ver. Tous les jours, le soleil se lève et se couche ; car l’horizon 
de l’observateur coupe tous les parallèles décrits par le so­
leil.

4° Pour l’habitant du cercle polaire boréal, au point d, dont 
l ’horizon rase les deux tropiques, les résultats sont encore les 
mêmes ; même égalité aux équinoxes, inégalitéanalogue aux 
autres époques; seulement, le jour du solstice d’été, le soleil 
ne se couche pas, il rase l ’horizon à minuit. Dans les jours 
voisins, il ne se couche que pour quelques minutes. C’est, le 
contraire à l’époque du solstice d’hiver ; ce jour-là, le soleil 
ne se lève pas, et pendant les jours qui précèdent ou qui sui­
vent le solstice, il ne se lève que pour quelques instants.



5" Des résultats analogues se présentent pour l’habitant i 
de la zone glaciale; seulement, comme l’horizon NN' ne coupe 
ni le tropique du Cancer ni les parallèles qui l ’avoisinent, on 
voit qu’au solstice d’été et pendant les jours qui le précèdent 
comme pendant ceux qui le suivent, le soleil ne descend pas 
au-dessous de l’horizon ; il n’y a plus de nuit. Mais aussi, dans 
le voisinage du solstice d’hiver, il n’y a plus de jour, le soleil 
ne se lève plus ; et la durée de cette nuit sans jour est égale à 
la durée du jour sans nuit qui a lieu à l’époque du solstice 
d’été.

6° Enfin, pour l’observateur placé au pôle p, le soleil décrit 
l’horizon aux équinoxes et se meut parallèlement à ce grand 
cercle à toute autre époque ; il ne se couche pas de l’équinoxe 
du printemps à celui d’automne, et il ne se lève pas pendant 
le reste de l’année. Le jour dure six mois, et la nuit six mois.

On comprend facilement qu’une explication analogue mon­
trerait comment, pour l’habitant de l’hémisphère austral, le 
phénomène se passe exactement en sens inverse, de sorte que 
nos plus longues nuits correspondent à ses plus longs jours, 
et vice versa.

§  III. —  I négalité  des jo in ts  et  des n iu ts , a onf. même é po q u e , ’Ourt l e s

DUTEIIENTS L1LLA DE LA TEK HE.

193. D urée du jour et de la nuit a une même époque. — On 
rend compte tout aussi facilement de l’inégalité des jours et 
des nuits, à une même époque, pour les dilférents lieux de la 
terre. Ainsi, le jour de l’équinoxe, le soleil décrit l’équateur ; 
ce grand cercle est coupé en deux parties égales par les hori­
zons de tous les lieux (ceux des pôles exceptés); donc le jour 
est égal à la nuit par toute la terre.

Entre l’équinoxe du printemps et le solstice d’été, le jour reste 
égal à la nuit pour l’habitant de l’équateur; mais, à mesure 
que l’observateur s’éloigne et s’avance dans l’hémisphère bo­
réal, la différence entre le jour et la nuit va en augmentant; 
cela résulte évidemment de la construction du n° 196, dans 
laquelle on voit que l’arc VQ'V'augmente, à mesure que l’ho­
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rizon HH' s’incline, et que le point K se rapproche du point Q. 
Lorsque l’observateur atteint une latitude égale au complément 
de la déclinaison du soleil pour l’époque assignée, la construc­
tion montre qu’il n’y a pasdcnuit, et que le jour dure 24 heu­
res. Il en est de môme, à plus forte raison, pour les lieux plus 
voisins du pôle et pour le pôle lui-même. C’est précisément 
l’inverse, si l’observateur va de l’équateur au pôle austral.

Au solstice d'été, les résultats sont analogues ; seulement, la 
différence entre la longueur du jour et celle de la nuit est 
plus prononcée; et, puisque la déclinaison du soleil est plus 
grande, c’est à une latitude moins élevée (celle du cercle po­
laire) que l’on ale jour sans nuit, ou la nuit sans jour.

Les mômes différences se manifestent pour les époques com­
prises entre le solstice d’été et l’équinoxe d'automne. La durée 
du jour est la même, à la môme distance avant et après le 
solstice.

Lorsque le soleil est dans l ’hémisphère austral, le jour est 
plus court que la nuit pour l’habitant de l’hémisphère boréal 
terrestre, et la différence augmente à mesure que l’observa­
teur se rapproche du pôle boréal ; il n’y a plus de jour, lors­
qu’il atteint une latitude complémentaire de la déclinaison 
de l’astre. Ce serait l’inverse, s’il parcourait les régions aus­
trales.

C’est au solstice d’hiver que la différence est la plus grande; 
et entre ce solstice et l’équinoxe du printemps, les différences se 
reproduisent les mômes qu’avant le sosltice.

§ IV. — Do chépuscüle.

199 . Créfuscule, aurore, brune. — Les molécules de l’at­
mosphère réfléchissent en tous sens la lumière qui émane du 
soleil ; et ces réilexions nombreuses produisent la lumière 
diffuse qui nous éclaire, même en l’absence des rayons directs 
de cet astre. Lorsque le soleil est sous i ’horizon en S (fig. 64), 
aucun de ses rayons n’arrive directementà l’observateur placé 
en A; mais si sa distance à l’horizon n’est pas trop grande, 
ses rayons pénètrent encore dans les régions supérieures de



l’atmosphère, et produisent cette lumière faible qui n’est plus 
ou qui n’est pas encore le jour, et qu’on appelle le crépuscule.

Le crépuscule se nomme spécialement la brune ou l’aurore, 
selon qu’il se manifeste le soir ou le malin. On estime par

CDATITRE VI. — INÉGALITÉ DES JOURS ET DES NUITS. 1 5 5

expérience, en calculant le temps qui s’écoule depuis le cou­
cher du soleil jusqu’à l’instant où l’on peut voir, à la vue sim­
ple, les plus petites étoiles (celles de 5' et de 6* grandeur), 
que la brune cesse et la nuit commence, lorsque le soleil est 
à 18 degrés au-dessous de l’horizon.

On peut conclure de ce fait, qu’il n’y a pas de nuit à Paris, 
au solstice d’été. Car, soit HH’ (fig. 63) l’horizon -de Paris ; le 
soleil, à l’époque indiquée, 
parcourt le tropique CT, et 
se trouve à minuit en T, à 
une distance TH au-dessous 
de l’horizon. Or, TH =  HE'
— TE' = 9 0 °  — X — d, en 
posant X =  48° 50' 11", lati­
tude de Paris, etc? = 2 3 °  27'
15", déclinaison maximum 
du soleil ; donc TII =  17°
42' 34". Ainsi, le soleil ne 
descend pas alors assez au- 
dessous de l’horizon, pour que la nuit complète survienne; 
et la brune n'est pas finie quand l’aurore commence.

2 0 0 .  Durée variable du crépuscule. — Le crépuscule du 
matin ou du soir est de courte durée (1* 12m environ) à l’é­
quateur, parce que le soleil se meut perpendiculairement à 
l’horizon ; sa durée s’allonge à mesure que la latitude aug­
mente, parce que les parallèles que décrit le soleil deviennent 
de plus en plus obliques à l’horizon. Pour déterminer sa durée
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en un lieu quelconque, à Paris, par exemple, à une époque 
donnée, menons (fig. 65) un plan hh' parallèle à l’horizon HH' 
du lieu, et situé au-dessous à 18° de distance (l’arc HA =  18°). 
Soit SS' le cercle que décrit alors le sole.il. La brune com­
mence lorsque le soleil est au point projeté en K, et linit 
lorsqu’il est au point projeté en L. L’aurore, au contraire, com­
mence au moment où le soleil est au point projeté en L, et 
finit lorsqu’il est au point projeté en K. La durée du crépus­
cule est donc représentée par l’arc du parallèle céleste projeté 
sur KL. On construira facilement cet arc, en rabattant le pa­
rallèle autour de SS', comme au n° 196, et son rapport à la 
circonférence sera le rapport de la durée du crépuscule à 
24 heures.

La durée du crépuscule varie pour un même lieu, avec les 
époquesde l’année; car,bien que les projections, telles que KL, 
soient toutes égales, les arcs correspondants ne sont pas 
égaux, et ne renferment pas le même nombre de degrés.

CHAPITRE VII

DES SAISONS

Inégalité de la durée des différentes saisons.

201. I négalité des saisons. — Les deux équinoxes et les 
deux solstices forment quatre époques remarquables, qui ser­
vent à diviser l’année en quatre parties inégales, auxquelles 
on donne le nom de saisons.

Leprintemps est le temps qui s’écoule depuis l’équinoxe du 
printemps jusqu’au solstice d’été ; il dure environ 92> 21*.

L’été s’étend du solstice d’été à l’équinoxe d’automne; il 
dure environ 93J 14*.

L’automne commence à l’équinoxe d’automne, et finit au 
solstice d’hiver ; il dure à peu près 89/18*.
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L’hiver enfin est le temps qui s’écoule entre le solstice 
d’hiver et l’équinoxe du printemps; sa durée est environ 
de 89>1A.

202. Causes de cette inégalité. — On voit, par les nombres 
que nous venons de citer, que l’été est la saison la plus longue, 
que l’hiver est la saison la plus courte, et que le printemps a 
plus de durée que l’automne. Cette inégalité est due à l’ellipti­
cité de l’orbite solaire, et à la position que le grand axe oc­
cupe par rapport à la ligne des équinoxes et à celle des sol­
stices. En effet, soit P T  A ü  (fig. 66) la courbe que décrit 
le soleil autour de la terre T placée au foyer ; le segment 
T A  ü  est plus grand que le segm enta P T ;  le soleil doit donc 
mettre plus de temps 
à parcourir le premier 
arc que le second, d’a- 
prôs la loi des aires; 
donc le printemps et 
l’été réunis doivent du­
rer plus que l’automne 
et l’hiver. D’ailleurs, 
c’est en été que l’astre 
passe à l’apogée A ; c’est en hiver qu’il passe au périgée P ; 
on comprend comment cette disposition de la ligne des ap­
sides rend l’été plus long que le printemps, et l’hiver plus 
court que l’automne, puisqu’elle rend le secteur % T i  plus 
grand que le secteur T  T e>, et le secteur xT T  plus petit 
que le secteur T x

205. — Nous devrions exposer ici les causes principales 
des variations de la température en un lieu déterminé de la 
terre, et dire quelques mots des questions importantes qui se 
rattachent à celle-ci; mais, ces questions n’existant pas dans 
le programme officiel, nous ne les traiterons que dans la 
note xix, à la fin du volume.
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CHAPITRE VIII

PRÉCESSION DES ÉQUINOXES.

§  I .  —  C e qu ' est  la m é c e s s io n  des équinoxes.

204. L ongitude et latitude d’un astre. — L’ascension droite 
et la déclination d’un astre ne forment pas le seul système de 
coordonnées à l’aide duquel on fixe la position de l’astre sur 
la sphère céleste. Il en est un autre, celui des longitudes et 
des latitudes, que l’on emploie de préférence.

Soient (Bg. 67) T la sphère céleste, EE' l’équateur, CC l’é­
cliptique; TP, TP„ les axes deces deux grands cercles. Soit, 
en outre, S, la position d’un astre. Menons par S et par cha­
cun des deux axes les deux grands cercles PSD, P,SL. On sait 
que l’ascension droite de l’astre S, comptée à partir de T  
(n° 143), est t D, et que sa déclinaison est SD. On appelle 
latitude de l’astre la distance SL de l’astre à l’écliptique, comp­
tée sur le grand cercle l\SL ; elle est boréale ou australe, et

et l’ascension droite par rapport au plan de l’équateur et à 
son axe. On comprend que les unes fixent, tout aussi bien 
que les autres, la position de l’astre S sur la sphère céleste.

se compte de 0° à 90°. On 
appelle longitude de l’astre 
l’arc T  L compris sur l’é­
cliptique entre le point T
et le pied L du cercle de 
latitude; elle se compte,

Fig. C7.

comme l’ascension droite, 
d’occident en orient, de 
0° à 360°. Ces deux coor­
données jouent, par rap­
port au plan de l’éclipti­
que et à son axe, le rôle 
que jouent la déclinaison



L’ascension droite et la déclinaison sont données par l’ob­
servation (nos 39 et 40); la longitude et la latitude s’en dédui­
sent par un calcul de trigonométrie sphérique (1).

2 0 o . Variations des longitudes des étoiles. — Lorsqu’on 
mesure, à différentes époques, les ascensions droites des étoi­
les, on trouve qu’elles vont généralement en augmentant avec 
le temps; on reconnaît que les déclinaisons sont également 
variables. Mais ces variations sont fort complexes, et il serait 
fort difficile d’en déterminer la loi, bien qu’elles n’altèrent 
pas les positions relatives de ces astres.

Mais si l’on transforme ces coordonnées en longitudes et la­
titudes, cette loi générale se montre avec évidence. Car, alors, 
on reconnaît que les latitudes n’éprouvent que des modifica­
tions nulles ou très-petites, tandis que les longitudes sont 
toutes augmentées d’une même quantité. Il semble donc que, 
dans l’intervalle des observations, toutes les étoiles se sont 
mues parallèlement à l’écliptique; et, comme leurs positions 
relatives n’ont pas été altérées dans ce mouvement, le phéno­
mène se passe comme si toute la sphère céleste tournait au­
tour de l’axe de l’écliptique, d’un mouvement très-lent, dirigé 
dans le sens direct, ou d’occident en orient.

2 0 6 . P remière hypothèse. — Pour concevoir cc mouve­
ment, reportons-nous à la 
ligure 68, dans laquelle 
EE' et CC' sont l’équateur 
et l’écliptique, et où PP',
P,P,' sont les axes de ces 
deux grands cercles. La 
longitude d’une étoile A 
est représentée par t L, 

la première époque d’ob­
servation. Si l’on suppose 
que, l’équaleur EE' et son 
axe PP1 restant fixes dans 
l’espace, a sphère tout 
entière tourne lentement autour de P,P,' dans le sens direct, 

(I) Voir la note i, & la fin d« volume.
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l’étoile A prendra une position A' à l’orient, en décrivant un 
petit arc AA'parallèle à l’écliptique; et sa longitude devien­
dra t L '>  T L , tandis que sa latitude AL ou A'L' restera 
constante. Il en sera de même pour toute autre étoile; et l’on 
voit que la variation de la longitude sera bien la même pour 
toutes dans le même temps. On voit encore qu’au pôle fixe P 
viendront passer successivement les points d’un petit cercle 
de la sphère mobile, tracé, du point P, comme pôle, paral­
lèlement à l’écliptique, avec le rayon P,P =  23° 27' 15", et 
que les differents points de l’écliptique viendront prendre 
successivement la position T  sur l’équateur.

2 0 7 .  Deuxième hypothèse. —  Mais, au lieu de supposer ainsi 
la sphère céleste tout entière animée d’un mouvement de ro­
tation autour de P,P,', tandis que l’équateur et son axe PF 
restent fixes, on peut, au contraire, la supposer immobile, et 
admettre que l’axe PP' tourne d’un mouvement conique au­
tour de P,P,', en sens rétrograde, en entraînant avec lui l’équa­
teur EE', qui lui reste perpendiculaire (fig. 69). Les apparences

seront exactement les mê­
mes pour l’observateur 
placé en T ; car le pôle mo­
bile P tracera, sur la 
sphère fixe, le même cer­
cle PG, décrit parallèle­
ment à l’écliptique avec le 
même rayon sphérique ; 
l’équateur fera constam­
ment, en se déplaçant, le 
même angle avec l’éclip­
tique; la ligne des équi­
noxes T T , cônslamment 

perpendiculaire à chacun des deux axes TP, TP,, et, par suite, 
à leur plan mobile, rétrogradera dans le plan de l'écliptique; 
et le point T  s’éloignant progressivement dans le sens T  G' 
sur l’écliptique, tandis que le point L restera fixe, fera paraître 
de plus en plus grande la longitude T  L de l’étoile A.

2 0 8 .  Choix de la deuxième hypothèse. —Cette seconde hypo­
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Fig. co.



thèse a pour elle l’avantage évident de la simplicité. Nous l’a­
dopterons donc comme la meilleure ; et il nous suffira, pour la 
réaliser, d’admettre que l’axe terrestre, au lieu de rester cons­
tamment fixe dans l’espace, décrit lentement un cône autour 
de l’axe de l’écliptique ; à peu près comme l’axe d’une toupie 
accomplit autour de la verticale une révolution conique, tan­
dis que la toupie tourne rapidement sur elle-même.

Nous dirons d’ailleurs que l’existence de ce mouvement co­
nique est démontrée rigoureusement ; caria cause en est con 
nue. On peut voir, dans la Mécanique céleste, comment on 
prouve que l’attraction de la lune, du soleil et des planètes 
sur le renflement équatorial de la terre, fait peu à peu dévier 
l’axe de rotation de sa direction primitive, et rend un compte 
fort satisfaisant de ce phénomène.

§ II. — M e s u r e  d e  la  p r é c e s s io n  ; a n n é e  s id é r a l e .

209. R étrogradationdes points équinoxiaux. — Si l’on a bien 
compris le mouvement que nous venons d’indiquer, on doit 
voir qu’à mesure que l’axe PP' tourne, en entraînant l’équa­
teur, la ligne d’intersection T r  de l’équateur mobile avec 
l’écliptique fixe rétrograde sur ce dernier plan, et que le point 
équinoxial T  prend successivement les positions T', T"... Il 
en est de même du point ü  . C’est à ce phénomène qu’on 
donne le nom de rétrogradation des points équinoxiaux. Pour 
mesurer ce petit mouvement, il nous suffira de comparer entre 
elles les longitudes d’une même étoile, calculées à des épo­
ques suffisamment éloignées. Or, voici un exemple cité par 
M. Biot, dans son Astronomie physique. V E  pi de la Vierge, d’a­
près les observations d’Hipparque, avait, 141 ans avant J.-C., 
une longitude égale à 174° 7'40", et, d’après celles de Mas- 
keline, en 1802, une longitude égale à 201° 4'41". L’accrois­
sement a donc été de 26°o7'U" en 1943 ans. En le supposant

J 26» 57'H"
uniforme, ce serait, par an, un accroissement de — —

ou 50" environ. Ce nombre est un peu trop faible, parce que la 
variation annuelle est un peu plus rapide aujourd’hui que du

i l
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temps d’Hipparque. Les observations modernes donnent 50", 2 
pour valeur de la rétrogradation actuelle. Si cette valeur se 
conservait indéfiniment, il faudrait environ 72 ans pour que le 
point équinoxial parcourût un degré, et par suite, près de 
26000 ans pour qu’il parcourût la circonférence entière de 
l’écliptique.

2 1 0 .  P récessiondeséquinoxes. — Lemouvementrétrograde 
des points équinoxiaux a pour effet d’avancer l’instant de l’é­
quinoxe. Car, si le soleil part du point T , pour décrire son 
orbite d’occident en orient, il trouve, lors de son retour, ce 
point en T', à 50",2 de sa position primitive. Ce retour au 
même point équinoxial précédé donc le retour à l’étoile fixe qui 
aurait coïncidé avec ce point l’année précédente : l’équinoxe 
arrive plus tôt que si le point T  était resté fixe. C’est ce phé­
nomène qu’on appelle la précession des équinoxes.

211 .  Année sidérale. — L’année tropique est mesurée par 
le retour du soleil au point équinoxial (n° 159). Si donc on ap­
pelle année sidérale le temps que le soleil emploie pour reve­
nir à la même étoile, cette dernière sera plus longue que la 
première, et il sera facile d’en calculer la durée. Car soient t 
la durée de l’année tropique et s celle de l’année sidérale : à 
la fin de la première, le soleil n’a réellement parcouru sur son 
orbite que 360° — 50", 2 : à la fin de la deuxième seulement, 
il a parcouru 360°. Or, son mouvement pouvant être considéré 
comme uniforme pendant le temps qui constitue leur diffé­
rence, on aura :

Ainsi l’année sidérale surpasse l ’année tropique de 
0’,0141184. Elle vaut donc 365AsoL m°y-, 2563744. Sa durée est 
invariable comme celle du jour sidéral.



§ III. —  C o n s é q u e n c e s  d e  la  p e é c e s s io n .

2 1 2 .  D éplacement du pôle. — Une des conséquences les 
plus remarquables de la précession des équinoxes, c’est que 
le pôle du monde P se déplace lentement, en décrivant sur la 
sphère céleste, autour du pôle P, de l’écliptique, en sens rétro­
grade, un petit cercle dont le rayon sphérique vaut 23° 27’ 15' 
environ. Il y a 4000 ans, le pôle se trouvait voisin d’a du Dra­
gon ; il s’est rapproché ensuite de 6 de la Petite Ourse. Au­
jourd'hui il n’est guère qu’à 1° 28' d’a de cette dernière con­
stellation ; il continuera à s’en rapprocher pendant 250 ans ; 
alors il n’en sera plus qu’à un demi-degré. Puis il s’en éloi­
gnera pour passer dans d’autres constellations. Dans 8000 ans, 
ce sera a du Cygne ; dans 12000 ans, ce sera Wéga de la Lyre, 
qui serviront à leur tour d’étoile polaire.

2 1 3 .  Changement d’aspect du ciel . — En outre, on com­
prend que ce déplacement du pôle P a pour effet de modifier 
à la longue l’aspect du ciel en un lieu donné, de rendre visi­
bles des étoiles qui ne passaient jamais au-dessus de l’horizon, 
et vice versa, de rendre circumpolaires des étoiles qui se cou­
chaient autrefois, etc.

2 1 4 .  Désaccord entre les signes et  les constellations du 
zodiaque. — La rétrogradation des points équinoxiaux a eu en­
core un effet remarquable sur le zodiaque. Avant Hipparque, 
en effet, on avait pris le point T  pour origine des divisions de 
la zone que parcourt le soleil ; on avait, à partir de ce point, 
comme nous l’avons dit (n° 129), partagé cette zone en douze 
parties égales, ayant chacune trente degrés en largeur ; et l’on 
avait donné à chacune de ces dodécatémories le nom et le si­
gne de la constellation qu’on y avait créée. Par conséquent, le 
commencement du signe du Bélier correspondait à l’équinoxe 
du printemps ; celui du signe du Cancer, au solstice d’été, etc.; 
et ces signes ou douzièmes comprenaient chacun la constella­
tion dont ils portaient le nom. Or, depuis deux mille ans, le 
pointT a rétrogradé d’environ 50",2 X  2000, ou de 100100", 
ou de 27 degrés à peu près ; il doit donc se trouver aujour­
d’hui près du commencement de la douzième dodécatémorie,

CITAPITRE VIII. —  PRÉCESSION DES ÉQUINOXES. 1G3
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qui contient les Poissons. L’équinoxe arrive donc aujourd’hui, 
lorsque le soleil se trouve dans la constellation des Poissons ; 
et il n’y a plus d’accord possible entre les divisions anciennes 
et les constellations zodiacales. Or, on est convenu de conser­
ver la division du zodiaque en douze signes de 30 degrés cha­
cun, à partir du point mobile T , et de garder les noms du Dé­
lier, du Taureau, etc., pour caractériser le 1er, le 2e signe, etc. 
Le soleil entre donc toujours à l’équinoxe dans le signe du 
Délier, au solstice dans celui du Cancer, etc.; mais il n'y ren­
contre plus les constellations de même nom qu’il y trouvait au­
trefois ; et il faut éviter de confondre aujourd’hui les mots 
signe du Lion et constellation du Lion, etc.

21o. V ariation de la dorée des saisons. — La précession 
des équinoxes a aussi une certaine influence sur la durée des 
saisons. En effet, reportons-nous à la fig. 66 (p. 157) ; nous 
voyons que le mouvement annuel du point T  tend à le 
rapprocher du périgée P, dont il est actuellement éloigné de 
79° 35' 35" (n° 141). Lorsque, dans la suite des temps, ces 
deux points seront confondus, Je printemps sera égal à l’hi­
ver, l’été à l’automne ; et ces deux dernières saisons seront 
plus longues que les deux autres. On comprend qu’il y a eu 
une époque, peu éloignée, où la ligne des équinoxes était per­
pendiculaire au grand axe : alors le printemps et l’été étaient 
égaux, ainsi que l’automne et l’hiver ; et ces deux dernières 
saisons étaient les plus courtes. Pour calculer la date de ce 
phénomène, il faut avoir égard au mouvement annuel du périgée 
solaire qui a lieu dans le sens direct (voir la note XX), et pren­
dre 62" et non 50",2 pour valeur du rapprochement annuel. 
On pose donc cette simple règle de trois : le point T  et le 
périgée se sont rapprochés de 62" par an, combien d’années 
ont-ils employées à se rapprocher de 10° 24' 25" ? Ce nombre

, , _ , , 10° 24'25" , 37465
d’années est égal a — — — ou à ——— =  604 : c est donc 

02 02

vers l’an 4260 de notre ère qu’il faut reporter le phénomène 
dont il s’agit. On calcule de la même manière l’époque à la­
quelle le point t  se trouvait à l’apogée A, où le printemps
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était égal à l’hiver, et l’été à l’automne, ces deux dernières 
saisons étant les plus courtes ; et l’on trouve que cette époque 
coïncide à peu près avec celle qu’assigne la Genèse à la créa­
tion du monde.

2 1 6 .  Decouverte delà  précession . — Le phénomène de la 
précession des équinoxes a été connu d'Hipparque, le plus 
grand astronome de l’antiquité (125 ans avant J.-G.). Ptolémée 
(130 ans après J.-C.), auteur de VAlmageste, le mit hors de 
doute, en se fondant sur les observations d’Ilipparque et sur 
les siennes ; mais il ne trouva qu’un déplacement annuel de 
36”, résultat beaucoup trop faible, dû au peu d’exactitude des 
observations faites à ces époques reculées.

2 1 7 .  N utation . — L’axe du monde n’est pas seulement sou­
mis au mouvement conique qui détermine la précession des 
équinoxes ; il en possède un autre, découvert par Bradley, 
et qu’on nomme la nutation. D’un autre côté, les éléments de 
l’orbite solaire éprouvent diverses variations séculaires dont 
la valeur est très-petite. Nous renvoyons nos lecteurs, pour 
l’exposition de ces questions délicates, à la note XX, placée à 
la fin du volume.

CHAPITRE IX

MOUVEMENT DE TRANSLATION DE LA TERRE AUTOUR DU 
SOLEIL.

§ I. —  E x p l ic a t io n  d u  m o u v e m e n t  a p p a r e n t  du  s o l e il  a u t o u r  d e  l a  i f .r r e ,

PAR UN MOUVEMENT RÉEL DE LA TERRE AUTOUR DU SOLEIL.

2 1 8 . — Nous avons exposé, dans les chapitres précédents, 
l’ensemble des faits que nous a présentés le mouvement pro­
pre du soleil, en admettant, conformément au témoignage de 
nos yeux, que ce mouvement était réel. Or il pourrait se faire 
que ce ne fût qu’une apparence; et de même quenoussommes
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parvenus à expliquer le mouvement diurne du ciel par un 
mouvement de rotation de la terre sur elle-même (n° 30), 
nous allons chercher à expliquer les apparences du mouve­
ment propre du soleil autour de la terre par un mouvement 
de la terre autour du soleil.

2 1 9 .  Hypothèse du mouvement de translation de la terre .— 
Le soleil paraît décrire autour de nous, en un an, une ellipse 
dont la terre occupe le foyer : son mouvement est direct; et 
on le constate en déterminant les constellations zodiacales 
qu’il traverse successivement, et l’ordre dans lequel s’effectue 
ce passage. Or, les apparences seront pour nous exactement

les mêmes, si nous supposons que le soleil est immobile, et 
que la terre décrit en un an, dans le même sens, et dans le même 
plan, avec la même vitesse variable, une ellipse égale, dont 
cet astre occupe le foyer ; le soleil nous paraîtra, dans cette 
nouvelle hypothèse, traverser les mêmes constellations dans 
le même ordre. En effet, soit (fig. 70) ss's“ la courbe que le



soleil paraît décrire autour de la terre T, dans le sens indiqué 
par la flèche. Soient s, s', s", ses positions successives apparen­
tes sur son orbite ; pour nos yeux, il est projeté sur la sphère 
céleste en S, S', S", à une distance infinie; et il paraît ainsi se 
mouvoir dans le sens SS'S", à travers les étoiles de ces ré­
gions. Or, si nous supposons l’astre immobile en s, pour que 
la terre, après un certain temps, le voie projeté en S', il suffit 
qu’elle soit venue se placer sur la droite sS' (parallèle à Ts'S’ à 
cause de la distance). D’ailleurs, la vraie distance des deux 
astres est indépendante de l’hypothèse qui attribue le mouve. 
ment à l’un ou à l’autre; donc la terre doit se trouver alors 
en T'à une distance T's égal à Ts'. Il résulte de là, que le sec­
teur TsT décrit par le rayon vecteur de la terre, dans la nou­
velle hypothèse, doit être identique au secteur sTs décrit, 
dans la première, par celui du soleil, puisque l’angle et les 
rayons vecteurs sont les mêmes, quel que soit d’ailleurs l’in­
tervalle de temps que l’on considère. Il suffira donc, pour 
que les apparences soient conservées, que la terre décrive au­
tour du soleil fixe en s, dans le sens direct, une ellipse ITT", 
égale à ss's”, et dont le soleil occuperait le foyer ; que la vitesse 
variable de la terre, en chaque point T', soit égale à celle que 
nous avons attribuée au soleil au point correspondant s', et 
que la révolution s’exécute dans le même temps.

2 2 0 . P reuves de cette hypothèse. — Or les raisons abon­
dent pour nous faire préférer cette nouvelle hypothèse à la 
première. En effet, 1° le soleil est 1300000 fois plus gros que 
la terre ; et, puisqu’il faut que l’un des deux corps tourne au­
tour de l’autre, avec une même vitesse d’environ huit lieues 
par seconde, il est plus simple d’attribuer ce mouvement à la 
terre que de l’attribuer an soleil. 2° Les planètes, comme on 
le verra, tournent toutes autour du soleil, en même temps 
qu’elles tournent sur elles-mêmes ; en admettant qu’il en est 
de même pour la terre, celle-ci devient une planète comme 
les autres, soumise aux mêmes lois ; et le système solaire pré­
sente une extrême simplicité. Si la terre, au contraire, est im­
mobile, il faut que le soleil, en tournant autour d’elle, en­
traîne avec lui les planètes dans son mouvement annuel ; les
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analogies sont détruites, et le système se complique considé­
rablement ; 3° indépendamment des inductions que nous ve­
nons d’indiquer, le mouvement annuel de la terre peut se dé­
montrer rigoureusement par des faits qu’on ne saurait con­
tester. Ainsi l’existence de la parallaxe annuelle de certaines 
étoiles en est une preuve matérielle : si la terre était immo­
bile, la direction du rayon visuel mené à une étoile ne chan­
gerait pas, et l’on ne pourrait pas, à six mois d’intervalle, 
mesurer, comme nous l’avons dit (n° 31), l’angle à l’étoile. 
Nous donnerons encore, dans les notes, une autre preuve re­
marquable tirée de l'aberration (1).

Concluons donc que : La terre décrit, en un an, avec une vi­
tesse variable, dirigée d'occident en orient, une ellipse dont le 
centre du soleil occupe le foyer. Et voyons comment, à ce nou­
veau point de vue, se présentent et s’expliquent les principaux 
phénomènes dont nous avons précédemment constaté la na­
ture.

§ II. — P hénomènes expliqués dans cette nouvelle hïpothèse.

2 2 1 .  P arallélisme de l’axe de rotation. — D’abord, dans 
son mouvement de translation autour du soleil, l’axe de rota­
tion de la terre, toujours perpendiculaire à l’équateur et in­
cliné sur l’écliptique de 6632'45", se transporte parallèlement 
à lui-même ; ou plutôt, à cause de la précession et de la nuta­
tion, sa direction est sensiblement parallèle aux génératrices 
successives d’un cône qui aurait pour axe une perpendiculaire 
au plan de l’écliptique, et pour angle au sommet l’obliquité 
23° 27' 15". Mais cette variation dans la direction n’étant que 
de quelques secondes par an, on peut admettre le parallé­
lisme rigoureux de ses positions successives dans cet inter­
valle.

2 2 2 .  Orbite de la ter re . — Le rayon vecteur, mené du so­
leil à la terre, décrit autour du soleil des aires proportion­
nelles aux temps. La vitesse maximum de la terre a lieu le 
31 décembre, et la vitesse minimum le 2 juillet : à la première

(1) Voir la note xxxtn, à la fin du volume.



époque, elle passe au périhélie ; elle passe à l'aphélie à la se­
conde.

225. L igne des équinoxes. — Le plan de l’écliptique est le 
plan de l’orbite que décrit le centre de la terre. La ligne des 
équinoxes est toujours l’intersection de ce plan avec le plan 
de l’équateur terrestre, mais cette ligne n’est plus fixe; et 
comme l’équateur est emporté parallèlement à lui-même 
dans le mouvement de translation, elle se transporte avec lui 
parallèlement à elle-même (abstraction faite de la précession 
et de la nutation). Les équinoxes ont lieu, lorsque la direc­
tion de cette ligne va passer par le centre du soleil ; et les sols­
tices, lorsqu’elle est perpendiculaire à la droite ST qui joint 
les centres des deux astres (n°s 230 et 231).

224. Zodiaque . — Le zodiaque est la zone des constellations 
que traverse la terre en un an. Il est facile de remarquer que, 
lorsque le soleil entre dans un signe, celui du Bélier, par 
exemple, en vertu de son mouvement apparent, la terre, en 
vertu de son mouvement réel, entre dans le signe opposé, 
celui de la Balance; c’est-à-dire qu’un observateur placé dans 
le soleil la verrait, à cette époque, traverser ce dernier signe. 
Car la droite ST perce la sphère céleste en deux points dia­
métralement opposés, suivant qu’on la prolonge au delà du 
soleil ou au delà de la terre.

Ces diverses circonstances sont mises en évidence dans la 
fig. 71 (p. 170), où S représente le soleil, TTT l’orbite de la 
terre, et T, T, T, ses positions successives ; où, de plus, PF  
est l’axe de rotation, EE' l’équateur, et ee’ la ligne des équi­
noxes.

22o. J our solaire. — Le jour sidéral ne dépend que de la 
rotation de la terre sur elle-même, parce que le chemin 
qu’elle parcourt en un jour, en vertu de son mouvement de 
translation, est nul à la distance des étoiles : c’est le temps 
qui s’écoule entre deux instants où le plan du demi-méridien 
mobile d’un lieu contient une même étoile. Mais le jour so­
laire vrai dépend à la fois des deux mouvements. En effet, 
soit T (fig. 72) la position de la terre sur son orbite, au mo­
ment où le méridien PAP' du lieu d’observation A contient le
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soleil S et une étoile B située à l’infini derrière lui. Lorsqu’en 
vertu de sa rotation autour de PP', ce méridien a repris la

même direction dans l’espace, la terre s’est transportée enT; 
le plan de ce méridien rencontre encore l'étoile B, parce que



T'B est parallèle à TB ; mais il ne rencontre pas encore le soleil 
S, qui n’est pas assez loin de nous pour que T'S soit parallèle à
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TS ; il faut, pour que la rencontre ait lieu, que ce plan tourne 
encore d’un petit angle APA', et prenne la position PA'P. 
Ainsi le jour solaire est plus long que le jour sidéral.

226. Année tropique. — L’année tropique est la durée de la 
révolution de la terre dans son orbite, ou le temps qu’elle em­
ploie à revenir au même équinoxe. On comprendra facile­
ment comment, après chaque révolution diurne, l’angle dont 
le plan du méridien doit tourner, pour revenir à sa direction 
primitive, va en augmentant progressivement ; comment, au 
bout de trois mois, cet angle est de 90° ; comment il est de 
180° après six mois ; comment enfin, après l’année révolue, il 
est de 360°; c’est-à-dire, comment, en faisant abstraction de 
la précession, on doit compter, en un an, un jour solaire de 
moins qu’on ne compte de jours sidéraux. La fig. 71 peut ser­
vir à expliquer parfaitement cette différence.

227. R otationdu soleil sur lui-même : durée du mouvement. 
— On rend compte tout aussi aisément de la différence que 
le mouvement de translation de la terre établit entre la du­
rée apparente et la durée réelle de la rotation du soleil sur 
lui-même. En effet, ces deux mouvements ont lieu dans le
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môme sens; lorsque le soleil (fig. 73) a fait une révolution 
complète sur lui-même, dans le sens de la llèche, et qu’une 
tache centrale est revenue prendre la position réelle G qu’elle 
occupait sur le disque, la terre, primitivement en T, s’est,

transportée en T' ; et la ligne 
ST' ne passant plus par le point 
C, la tache ne parait pas en­
core avoir retrouvé sa position 
centrale. Il faut que le soleil 
tourne encore d’un certain an­
gle pour qu’elle reprenne cette 
position ; et, lorsque ce mo­
ment est arrivé, si la terre est 
en T', et la tache en C', la tache 
a réellement décrit une circon­
férence entière, augmentée de 

l’arc CC', lequel mesure le mouvement anglaire CSG'ou TST' 
de la terre pendant ce temps. La durée apparente de la rota­
tion est donc plus longue que la durée vraie, et le calcul de 
cette dernière se déduit de la valeur de la première, comme 
on l’a vu (n° 188).

§ III. — De l’inégai.ité des jouhs et des nuits.

228. Cercle d’illumination. — Quelle que soit, à un instant 
donné, la position de la terre sur son orbite, une partie de sa 
surface reçoit les rayons du soleil, tandis que l’autre est plon­
gée dans l’obscurité. Mais, comme la vitesse angulaire du 
mouvement de rotation est plus grande que celle du mouve­
ment de translation, puisque le premier s’accomplit en un 
jour et le second en un an, on comprend qu’en général cha­
que lieu de la terre passe successivement de la région obscure 
dans la région éclairée, et vice versâ, et qu’il a ainsi alternati­
vement le jour et la nuit.

Pour déterminer, à une époque donnée, la ligne qui sépare 
ces deux régions à la surface du globe, concevons un cône 
tangent aux surfaces du soleil S et de la terre T (fig. 74) ; ce
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cône comprend évidemment tous les rayons lumineux que 
reçoit la terre ; la ligne de contact ACB des deux surfaces est 
donc la ligne de séparation de l’ombre et de la lumière. Or, en 
supposant la terre sphérique, cette courbe est un petit cercle 
desa surface, dont le plan, perpendiculaire à l’axe ST du cône, 
rencontre cet axe sur son prolongement au delà du centre T.

Mais comme la distance ST des centres des deux globes est 
fort considérable par rapport à leurs rayons, l’angle au som­
met du cône est très-petit ; et l ’on peut considérer la ligne de 
contact ACB comme un grand cercle. Par conséquent, si l’on 
mène par le centre T de la terre un plan perpendiculaire à la 
droite ST, ce plan séparera la région obscure AHB de la ré­
gion éclairée ALB. Ce grand cercle se nomme cercle d’illumi­
nation.

2 2 0 . Cela posé, pour résoudre toutes les questions relati­
ves à la durée du jour ou de la nuit, il suffira d’examiner 
comment le cercle d’illumination coupe les parallèles terres­
tres aux diverses époques de l’année. Car le mouvement de 
rotation est uniforme; si donc un parallèle est coupé en deux 
parties égales, le jour sera égal à la nuit sur ce parallèle, puis­
que chacun de ses points sera dans la région éclairée pendant 
une demi-révolution, et dans la région obscure pendant l’au­
tre moitié. En général, le rapport des deux arcs déterminés, 
sur un parallèle, par le cercle d'illumination, sera le rapport 
des durées du jour et de la nuit pour ce parallèle.

2 5 0 .  J ours  e t  n u i t s  a u x  é q u i n o x e s . — Examinons donc 
comment varie ce rapport, pour les différents parallèles, aux 
principales époques de l’année. Puisque la ligne des équinoxes



se transporte sur l’écliptique parallèlement à elle-même, 
il arrivera deux fois par an (fig. 71), que son prolongement 
passera par le centre du soleil et se confondra avec ST. Ce 
centre se trouvera alors dans le plan de l’équateur. Le cercle 
d’illumination, perpendiculaire à la ligne ST, et par consé­
quent à la ligne des équinoxes ee' et à l’équateur EE', contien­
dra l’axe des pôles PP'; et, comme tout parallèle DD' a son 
centre sur cet axe, il sera partagé par le grand cercle en deux 
parties égales. Donc le jour est alors égal à la nuit pour toute 
la terre; c’est l’époque des équinoxes. Dans la figure, T (n° 1) 
est la position de la terre lors de l’équinoxe du printemps, et 
T (n° 5) sa position lors de l’équinoxe d’automne. Dans les 
deux cas, l’intersection DK du cercle d’illumination avec l’é­
cliptique est une tangente à l’orbite que nous supposons cir­
culaire : c’est la ligne des solstices.

251 . J ours et nuits aux solstices. — Il arrive nécessaire­
ment aussi, deux fois par an, que la ligne des équinoxes est 
perpendiculaire à ST (fig. 71), et par suite tangente à l’orbite ; 
alors le cercle d’illumination contient cette ligne, et fait avec 
l’axe de rotation un angle de 23° 27' 15"; le plan qui contient

cet axe et la droite ST est 
perpendiculaire à l’éclip­
tique, et détermine sur la 
surface de la terre un grand 
cercle PEP'E'. C’est l’épo­
que des solstices. Dans la 
figure, T (n° 3) est la po­
sition de la terre au sol­
stice d’été, et T (n° 7) sa 
position au solstice d’hi­
ver. On voit que le cercle 
d’illumination ATB par­
tage encore l’équateur EE 
en deux parties égales ; 

donc le jour est égal à la nuit, au solstice comme à toute autre 
époque, pour les habitants de ce grand cercle. Mais on voit aussi 
que les parallèles LL', KK' (fig. 75) de l’hémisphère boréal
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sont partagés en parties de plus en plus inégales, à mesure 
qu’ils s’éloignent de l’équateur; qu’au solstice d’été, la plus 
grande partie est éclairée, la plus petite est dans la nuit; 
donc le jour est plus long que la nuit, à cette époque, pour 
ces parallèles (1) ; au solstice d’hiver, au contraire, les mêmes 
parallèles ont la nuit plus longue que le jour. C’est exacte­
ment l’inverse pour les parallèles de l’hémisphère austral; 
et pour deux parallèles équidistants de l’équateur, il y a sy­
métrie complète, de sorte que la durée du jour pour l’un est 
la durée de la nuit pour l’autre.

Les cercles polaires AA', BB', étant à 23° 27' 15" des pôles, 
sont nécessairement tangents en A et B au cercle d’illumina­
tion. Donc, au solstice d’été, le cercle polaire boréal BB' et 
tous les points situés plus près du pôle P n’ont pas de nuit ; le 
cercle polaire austral AA' et tous les points plus voisins du 
pôle P' n’ont pas de jour. C’est encore l’inverse au solstice 
d’hiver.

252. J o u r s  e t  n u i t s  e n t r e  l e s  s o l s t ic e s  e t  l e s  é q u i n o x e s . —  

Lorsque la terre passe d’un équinoxe au solstice suivant, 
l’axe PP', d’abord situé dans le plan du cercle d’illumination, 
s’en éloigne peu à peu, et finit par faire avec lui un angle de 
23° 27' 15". Ce plan coupe un parallèle donné en parties de 
plus en plus inégales; et les jours, pour ce parallèle, d’abord 
égaux aux nuits, s’allongent ou se raccourcissent peu à peu, 
et ont leurs valeurs maximum ou minimum à l’époque du 
solstice; puis ils varient en sens inverse, lorsque la terre va 
d’un solstice à l’équinoxe suivant. On voit que cette explica­
tion concorde parfaitement avec celle que nous avons donnée 
en supposant le soleil en mouvement autour de la terre.

(1) On peut construire aisément, pour un parallèle donné KK' (fig. 75), les 
arcs qui mesurent les durées respectives du jour et de la nuit. Car, soit ATB 
la trace du cercle d’illumination sur le plan PEP'E' qui passe par le soleil ; 
il coupe le parallèle suivant une droite projetée en H, perpendiculaire surKK' 
Si l’on fait tourner ce parallèle autour de KK', cette perpendiculaire se rabat

VKsuivant HV ; alors -7-77 est le rapport du jour à la nuit.
V K
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g IV. —  P récession des équinoxes.

233. — P récession. Nous avons déjà dit que la précession 
des équinoxes a pour cause l'attraction du soleil et de la lune 
sur le renflement équatorial delà terre. Il nous reste à montrer 
ici comment ce petit mouvement se concilie avec l'hypothèse 
du mouvement de notre globe.

Soient (fig. 7G) TAP l’orbite elliptique de la terre, T sa po­
sition à l’équinoxe du printemps; on sait qu’à ce moment la 
ligne des équinoxes, ou l’intersection de son équateur avec 
l’écliptique, est la droite TeS, dirigée vers le soleil. Si cette 
droite restait parallèle à elle-même pendant une année, elle 
aurait la direction TV, lorsque la terre serait venue en T' ; 
mais par suite du mouvement conique de l’axe terrestre, elle

a tourné en sens ré­
trograde et a pris une 
position Te". On com­
prend, d’après cela, 
qu’elle rencontrera 
plus tôt le soleil S, que 
si elle n’avait pas chan­
gé de direction; et 
comme ellerétrograde 
de 30",2 par année, ce 
sera au moment où la 
terre atteindra la po­
sition T' telle que 

TST =  50", 2 qu’aura lieu l’équinoxe. Il y aura donc précession 
de l’équinoxe. D’ailleurs, à ce moment, le soleil lui paraît 
projeté en Y  sur la sphère céleste, tandis qu’il paraissait pro­
jeté en T  l’année précédente : le point équinoxial lui paraît 
donc rétrograder sur l’écliptique.

§ V. — Conclusion.'

2 3 4 . Nous terminerons ce chapitre en citant la belle



page dans laquelle Laplace résume les analogies qui militent 
en faveur du mouvement de translation de la terre autour du 
soleil (.Exposition du système du monde, liv. II, ch. n).

« La considération des mouvements célestes nous conduit à 
« déplacer la terre du centre du monde où nous la supposions, 
« trompés par les apparences et par le penchant qui porte 
« l’homme à se regarder comme le principal objet de la na- 
« ture. Le globe qu’il habite est une planète en mouvement 
« sur elle-même et autour du soleil. En l’envisageant sous cet 
« aspect, tous les phénomènes s’expliquent de la manière la 
« plus simple : les lois des mouvements célestes sont unifor- 
« mes : toutes les analogies sont observées. Ainsi que Jupiter, 
« Saturne et Uranus, la terre est accompagnée d’un satellite; 
«elle tourne sur elle-même, comme Vénus, Mars, Jupiter, 
« Saturne, et probablement toutes les autres planètes ; elle 
« emprunte, comme elles, sa lumière du soleil, et se meut 
« autour de lui, dans le même sens, et suivant les mêmes 
« lois. Enfin, la pensée du mouvement de la terre réunit en 
«safaveur la simplicité, l’analogie, et généralement tout ce 
« qui caractérise le vrai système de la nature. Nous verrons, 
« en la suivant dans ses conséquences, les phénomènes céles- 
« tes ramenés, jusque dans leurs plus petits détails, à une 
«seule loi dont ils sont les développements nécessaires. Le 
« mouvement de la terre acquerra ainsi toutela certitude don' 
«les vérités physiques sont susceptibles, et qui peut résulter, 
«soit du grand nombre et de la variété des phénomènes ex- 
« pliqués, soit de la simplicité des lois dont on les fait dépen- 
«dre. Aucune branche des sciences naturelles ne réunit à un 
« plus haut degré ces avantages, que la théorie du système du 
« monde, fondée sur le mouvement de la terre.

« Ce mouvement agrandit l’univers à nos yeux : il nous 
« donne, pour mesurer les distances des corps célestes, une 
« base immense, le diamètre de l’orbe terrestre. C’est par 
« son moyen que l’on a exactement déterminé les dimensions 
« des orbes planétaires. Ainsi le mouvement de la terre, qui, 
« par des illusions dont il est la cause, a pendant longtemps 
« retardé la connaissance des mouvements réels des planèles,
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« nous les a fait connaître ensuite avec plus de précision que 
« si nous eussions été placés au foyer de ces mouvements. 
« Cependant la parallaxe annuelle des étoiles, ou l’angle sous 
« lequel on verrait, de leur centre, le diamètre de l’orbe ter- 
«restre, est insensible, même relativement aux étoiles qui, 
«par leur vif éclat, semblent être le plus près de la terre : 
« elles en sont donc au moins deux cent mille fois plus éloignées 
« que le soleil. Une aussi prodigieuse distance, jointe à leur 
« vive clarté, nous prouve évidemment qu’elles n’empruntent 
«point, comme les planètes et les satellites, leur lumière du 
« soleil, mais qu’elles brillent de leur propre lumière ; en 
» sorte qu’elles sont autant de soleils répandus dans l’immen- 
« sité de l’espace, et qui, semblables au nôtre, peuvent être 
« les foyers d’autant de systèmes planétaires. Il suffit, en efïct, 
« de nous placer sur le plus voisin de ces astres pour ne voir 
« le soleil que comme un astre lumineux, dont le diamètre 
« apparent serait au-dessous d’un dixième de seconde.

« Il résulte de l ’immense distance des étoiles, que leurs 
« mouvements en ascension droite et en déclinaison ne sont 
« que des apparences produites par le mouvement de l’axe 
« de rotation de la terre. Mais quelques étoiles paraissent avoir 
« des mouvements propres; et il est vraisemblable qu’elles 
« sont toutes en mouvement, ainsi que le soleil qui transporte 
« avec lui dans l’espace le système entier des planètes et des 
« comètes, de même que chaque planète entraîne ses satelli- 
« tes dans son mouvement autour du soleil. »

EXERCICES ET APPLICATIONS.

2 * 3 .  —  1 . L o r s q u ’ u n  a s t r e  e s t  a s s e z  é lo ig n é  d e  l a  t e r r e  p o u r  q u e  so n  
d i a m è t r e  a p p a r e n t  s o i t  t r è s - p e t i t ,  o n  p e u t  d i r e  q u e  c e  d i a m è t r e  a p p a r e n t  
v a r i e  e n  r a i s o n  in v e r s e  d e  l a  d i s t a n c e  d e  l ’a s t r e  h l ’o b s e r v a t e u r  (n °  1 3 3 ) .  

Q u e l l e  e s t  l a  lo i r i g o u r e u s e  q u i  l i e  le s  d i a m è t r e s  a p p a r e n t s  e t  le s  d i s t a n c e s ,  
d a n s  le  c a s  o ù  l ’e x c e p t io n  n ’a  p a s  l i e n  ? *

2 .  C a l c u le r ,  d a n s  u n  c a d r a n  h o r i z o n ta l  o u  d a n s  u n  c a d r a n  v e r t i c a l ,  le s  

a n g l e s  q u e  f o r m e n t  a v e c  l a  l ig u e  d u  m id i  le s  l ig n e s  q u i  c o r r e s p o n d e n t  a u x  
d i f f é r e n te s  h e u r e s .  ( N o te  xiv.)

8 .  O n  d o n n e ,  d a n s  u n  c a d r a n  v e r t i c a l  d é c l i n a n t ,  l ’a n g le  q u e  l a  t r a c e  d u
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c a d r a n  s u r  le  s o l  Tait a v e c  l a  l i g n e  d 'es t e t ouest ; o n  p r o p o s e  d e  c a l c u l e r  le s  
a n g le s  q u e  f o r m e n t  a v e c  l a  l i g n e  d u  m i d i  le s  d r o i t e s  q u i  c o r r e s p o n d e n t  a u x  

d i f f é r e n te s  h e u r e s .  (N o te  x iv .)
4 .  C h e z  le s  P e r s a n s ,  a u  x i*  s iè c le ,  tro is  années  c o m m u n e s  é t a i e n t  s u iv ie s  

sep t fo is  d e  su ite  d ’u n e  a n n é e  d e  3GG j o u r s  ; m a is  l a  hu itièm e  fo is  l e  3G 0 ' 
j o u r  i n t e r c a l a i r e  n e  s ’a p p l i q u a i t  p lu s  A l a  4* a n n é e  d e  l a  s é r i e  ; o n  a t t e n d a i t  
l a  cinquième  p o u r  o p é r e r  l 'a d d i t i o n .  Q u e l le  l o n g u e u r  m o y e n n e  c e t t e  i n t e r c a ­
la t i o n  d o n n e - t - e l l e  à  l ’a n n é e  ?

5 . L ’a n  1277 d e  l’h é g i r e  a  c o m m e n c é  le  2 0  j u i l l e t  18G0. O n  s a i t ,  d ’ u n e  p a r t ,  

q u e ,  s u r  4 0 0  a n n é e s  g r é g o r i e n n e s ,  3 0 3  s o n t  c o m p o s é e s  d e  3G5 j o u r s ,  e t  97 

c o m p te n t  u n  j o u r  d e  p lu s .  O n  s a i t ,  d e  l ’a u t r e ,  q u e ,  s u r  2 5  a n n é e s  t u r q u e s ,  

IG s o n t  c o m p o s é e s  d e  354 j o u r s ,  e t  9  c o m p te n t  u n  j o u r  d e  p l u s .  O n  d e ­

m a n d e  & q u e l le  é p o q u e  d e  l ’è r e  c h r é t i e n n e  l e  m i l lé s im e  t u r c  c o ï n c id e r a  

a v e c  le  m i l lé s im e  g r é g o r i e n ,  e t  p e n d a n t  c o m b ie n  d e  te m p s  a u r a  l i e u  l a  c o ïn ­
c id e n c e  ?

G. C o n n a i s s a n t  l a  l a t i t u d e  d ’u n  l i e u  à  l a  s u r f a c e  d e  l a  t e r r e ,  e t  l a  d é c l i ­
n a i s o n  d u  s o le i l  p o u r  u n  j o u r  d e  l ’a n n é e ,  c a l c u l e r  l a  d u r é e  d u  c r é p u s c u l e  
e n  c e  l i e u  p o u r  c e t t e  é p o q u e .  D i s c u t e r  l a  fo r m u le .

7 .  C o n n a i s s a n t  l a  l a t i t u d e  d ’u n  l i e u  d e  l a  t e r r e ,  e t  l a  d é c l in a i s o n  d u  s o le i l  

p o u r  u n e  c e r t a i n e  é p o q u e ,  c a lc u le r  le s  d u r é e s  d u  j o u r  e t  d e  l a  n u i t  à  c e t te  

é p o q u e  e t  p o u r  c e  l i e u .  D i s c u t e r  l a  f o r m u le  e t  e n  d é d u i r e  t o u t e s  l e s  c i r ­
c o n s ta n c e s  d e  l ’i n é g a l i t é  d e s  j o u r s  e t  d e s  n u i t s .
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CHAPITRE PREMIER

PHA SES DE LA LUNE

D ia m è tre  a p p a re n t .  —  P h a s e s .  —  S y zy g ie s . —  Q u a d ra tu r e s .  —  L u m iè re
c e n d ré e .

§  ï .  —  Descriptio n  des ph a se s .

250. D i a m è t r e  a p p a r e n t , p h a s e s . — Le soleil n’est pas le 
seul corps qui, tout en obéissant aux lois du mouvement 
diurne, paraisse avoir un mouvement propre. Et, parmi les 
astres qui ne demeurent pas fixes sur la voûte du ciel, les pre­
miers observateurs ont dû tout d’abord distinguer la L u n e . 

Douée d’une lumière blanche qui n’éblouit pas la vue, elle se 
présente à nos yeux sous un diamètre apparent sensiblement 
égal à celui du soleil. Mais, tandis que le soleil nous apparaît 
constamment sous la forme d’un disque parfaitement circu­

laire, la lune nous présente, en un mois 
environ, les formes les plus variées, les pha­
ses les plus diverses.

257. P leine lune. — Si l’on choisit, par 
exemple, l’époque où la lune passe au mé­
ridien vers minuit, elle s’offre à nos yeux 
sous la forme d’un cercle entier L(fig. 77) ; 

elle brille pendant la nuit entière. C’est la pleine lune.
Pendant les nuits suivantes, on la voit passer au méridien,



après minuit, à des heures de plus en plus distantes de la pre­
mière. En même temps, son bord de droite s’efface peu à peu : 
elle prend la forme L, (fig. 78).
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Ü58. Dernier quartier. — Yersle septième jour, laluneest 
devenue un demi-cercle Ls (fig. 79), dont le diamètre est situé

à droite : alors elle passe au méridien vers G heures du ma­
lin : elle n’éclaire que la seconde partie de la nuit ; et on la 
voit encore le matin à l’occident après le lever du soleil. C’est 
le dernier quartier : on est alors au milieu du déclin de la lune.

A mesure que les nuits s’écoulent, le disque se rétrécit de 
plus en plus, et prend la forme d’un croissant L, (fig. 80), 
dont la largeur va diminuant, et dont les pointes sont dirigées 
vers la droite et vers le haut. Le passage au méridien retarde 
aussi continuellement, de sorte que son lever précède peu 
celui du soleil. Yersle treizième jour, la lune n’apparaît plus 
que comme un filet courbe L4(fig. 81), très-voisin du soleil 
levant.

250. N o u v e l l e  l u n e .  — Au bout de quatorze à quinze jours.

on cesse entièrement de la voir : c’est l’époque de la néoménie 

ou nouvelle lune.
Mais bientôt elle reparaît le soir, à l’occident, près du soleil 

couchant, sous la forme d’un croissant très-délié L„ (fig 82).
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dont les pointes sont dirigées vers le haut et à gauche. Ce filet 
croît chaque jour en largeur, et prend la forme L6 (fig. 83). En 
même temps, le passage au méridien, qui avait d'abord lieu 
peu après midi, retarde de plus en plus.

240. P remier quartier. — Vers le vingt-deuxième jour, la 
lune prend de nouveau la forme d’un demi- 
cercle L, (fig. 84), dont le diamètre est à 
gauche de l’observateur : elle passe alors 
au méridien vers 6 heures du soir, et se 
couche vers minuit, de sorte qu’elle n’é­
claire que la première partie de la nuit. 
C’est le premier quartier. On peut la voir, 

le soir, à l’orient, avant le coucher du soleil : on est alors au 
milieu du croissant.

Les jours suivants, la surface lumineuse s’agrandit peu à 
peu sur la gauche , et prend la forme L„ 
(fig. 83); en même temps, elle passe au 
méridien peu avant minuit. Enfin, vers le 
vingt-neuvième ou trentième jour, on la 
revoit de nouveau sous la forme d’un cer­
cle entier L (fig. 77).

241. Svzygies, quadratures. — Telle est 
la série des aspects que l’on a désignés sous 

le nom de phases de la lune. La nouvelle et la pleine lune por­
tent le nom commun de syzygies; le premier et 1 o dernier quar­
tier, celui de quadratures. La durée d’une période complète 
des phases s’appelle lunaison.

Le nombre des jours écoulés depuis la dernière nouvelle lune 
s’appelle l'âge de la lune. On est convenu de dire que la lune 
est âgée d'un jour, pendant les vingt-quatre heures qui suivent 
l’instant de la nouvelle lune; pendant les vingt-quatre heures 
suivantes, la lune est âgée de deux jours, et ainsi de suite. 
L’âge de la lune est donc représenté successivement par les 
nombres entiers depuis 1 jusqu’à 30. h’ Annuaire du Bureau des 
longitudes donne cet âge, pour chaque jour à midi.

On peut remarquer que les cornes du croissant sont, à tout 
instant, dirigées à T’opposé du soleil, et que le plan qui serait
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mené par le milieu du diamètre, joignant les cornes, et per­
pendiculairement àce diamètre, va passer, au-dessous de l’ho­
rizon, par le centre du soleil. La partie du disque qui regarde 
le soleil a toujours l’apparence d’une demi-circonférence; la 
partie opposée, celle d’une demi-ellipse dont le grand axe 
serait le diamètre des cornes.

g  I I .  —  E x plic a tio n  des ph a se s .

242. — Pour expliquer, danstousleursdélails, ces apparen­
ces singulières, il suffit d’admettre 1 ° que la lune est un corps 
sensiblement sphérique, opaque, non lumineux par lui-mô- 
me, et qui réfléchit la lumière qu’il reçoit du soleil; 2° que la 
lune circule autour de la terre, dans une orbite à peu près 
circulaire, dans un plan peu incliné sur l ’écliptique, avec une 
vitesse à peu près constante, en un mois environ, et qu’elle 
est beaucoup plus près de nous que le soleil : ce qui sera dé­
montré un peu plus loin (n0’ 255, etc.).

Nous supposerons d’abord, pour rendre l’explication plus 
simple, que la lune se meut dans le plan de l’écliptique ; que 
son orbite est circulaire; que le soleil est assez loin pour que la 
direction de scs rayons puisse être regardée comme con­
stante, quelle que soit la position de la lune dans son orbite; 
et enfin que la terre reste immobile pendant une période 
complète des phases.

2-45. Cercle d’illumination, cercle du contour apparent.— 
Soient donc : T la position de la terre (fig. 86), LL,L„ l’orbite 
circulaire de la lune ; soit ST la direction qu’auront les 
rayons du soleil pendant la durée des phases, direction qui 
sera constante, à cause de la grande distance qui nous sé­
pare de cet astre. Pour obtenir la partie éclairée de la lune, 
il suffira de mener par son centre un plan perpendiculaire à 
la direction constante SL : le cercie d’illumination ainsi obtenu 
sera la courbe de séparation d’ombre et de lumière. Pour 
avoir la partie de la lune visible pour nous, il suffira de 
môme de mener par son centre un plan perpendiculaire à la 
droite TL. L’un des fuseaux compris entre ces deux grands
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cercles, fuseau facile d’ailleurs à distinguer des autres, est la 
partie à la fois éclairée et visible ; c’est cette partie dont la

projection sur la sphère céleste présente à nos yeux les di­
vers aspects des phases.

2 4 4 . Pleine lune. — En effet, lorsque la lune est en L, les 
directions SL et TL se confondant, le cercle d’illumination et 
le cercle du contour apparent se confondent aussi suivant II' ; 
l’hémisphère IAI' est à la fois éclairé et visible : il se projette 
orthographiquement sur sa base, et paraît sous la forme d’un 
cercle entier ; c’est la pleine lune L de la fig. 77.

Lorsque la lune vient en L„ le cercle d’illumination II' reste 
parallèle à lui-même; mais le cercle de contour apparent CD 
tourne, en restant perpendiculaire à L,T. Le fuseau, à la fois 
éclairé et visible, est compris entre les plans I'L, et L,D ; et sa 
projection sur le ciel a la forme L„ de la fig. 78 : car le demi- 
cercle déterminé par le plan L,D est lui-même sa projection, 
tandis que le demi-cercle déterminé par le plan oblique LJ', 
se projette suivant une ellipse, dont le grand axe est le dia­
mètre de la lune, et dont le petit axe est 2LiK.



2 4 8 .Dernier quartier. — EnL2, à 90° de L, le cercle d’illu­
mination 11' et le cercle de contour apparent CD sont perpen­
diculaires l’un à l’autre ; la partie visible et éclairée I'L2D est 
un quart de sphère, qui se projette suivant le demi-cercle L, 
de la fig. 79 ; car le plan du cercle II' passe par T, et a pour 
projection une ligne droite : c’est le dernier quartier.

En L3, le fuseau éclairé et visible n’est plus que I'L3D : il se 
projette par lès mômes raisons, suivant le croissant Ls de la 
fig. 80, dont l’arc intérieur est une demi-ellipse. A mesure 
que la lune avance, le fuseau se rétrécit et prend la forme Lt 
(fig. 81.) On voit que les cornes sont les extrémités du dia­
mètre d’intersection des deux grands cercles, et qu’elles sont 
toujours à l’opposé du soleil.

2 4 0 . N o u v e l l e  l u n e . — Lorsque la lune est en L4 

(fig. 86), les deux plans se confondent de nouveau ; mais la 
partie éclairée est complètement invisible, et la partie qu’on 
pourrait voir est complètement obscure. L’astre est donc 

alors invisible : c’est l’époque de la nouvelle lune.
247. P remier quartier. — A partir de ce moment, les 

mômes phases, à mesure que la lune s’avance sur son or­
bite, se reproduisent en sens inverse; croissant en L6, demi- 
cercle et premier quartier en L7, demi-cercle et demi-ellipse 
en L8 : ce sont les apparencesLs, L„ L,, L8, des figures 82, 83, 
84, 83.

<>48. R emarques. — On remarque qu’en chaque position, 
Ls par exemple, l’angle du fuseau I'L3D est égal à l’angle STL„ 
c’est-à-dire à l’angle que forment les rayons visuels menés 
au soleil et à la lune.

On peut remarquer encore que le mouvement de rotation de 
la terre sur elle-même, autour d’un axe qui fait un grand angle 
(66° 4) avec l’écliptique, amène la lune sur l’horizon d’un point 
de l’équateur, lorsqu'elle est pleine, au moment où le soleil 
se couche; qu’à mesure que la lune s’avance en L„ L2, etc., 
l’heure de son lever s’écarte de l’heure du coucher du soleil; 
qu’en L,,’ elle se lève vers minuit, et en Ls après minuit ; que 
lorsqu’elle est nouvelle, elle se lève en môme temps que 
le soleil, et qu’enfin, lorsqu’elle s’avance de L en L elle se
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lève après le soleil et se couche après lui, à des heures de 
plus en plus reculées. Il suffit, pour s’en convaincre, de con­
sidérer l’horizon du lieu comme un plan mobile dont les posi­
tions successives vont passer par le soleil et par la lune, et dé­
terminent le lever et le coucher de ces astres.

2 4 9 . Influence du mouvement de translation de la terre.— 
Les choses d’ailleurs ne se passent pas tout à fait ainsi; mais les 
hypothèses que nous avons faites, pour simplifier l’explica­
tion, ne l’altèrent pas d’une manière notable. Ainsi 1° la lune 
ne se meut pas tout à fait dans le plan de l’écliptique : elle est 
tantôt d’un côté, tantôt de l’autre de ce plan ; sa distance à la 
terre varie : ces circonstances modifient très-légèrement l’as­
pect des phases ; 2° le soleil n’est pas à une distance infinie ; 
les rayons SL, SL„ SLr etc., ne sont donc pas parallèles : 
cette nouvelle condition tend à augmenter le petit diamètre 
de la phase, à un moment donné ; 3° enfin, la terre, en un 
mois, se déplace fort sensiblement dans son orbite, puis­
qu’elle en parcourt environ la douzième partie. Ce mouve­
ment n’a d’autre effet que d’allonger la durée pendant la­

quelle s’accomplit la pé­
riode des phases; il n’en 
altère pas les divers as­
pects. Carsoient (fig. 87) : 
S le soleil, T une posi­
tion de la terre au mo­
ment où la lune est pleine 
en L, et LL' l’orbite de la 
lune. Si la terre était 
immobile en T, la pé­
riode des phases serait 
accomplie, lorsque la 

lune serait revenue en L ; mais pendant ce temps la terre 
s’est transportée en T7, entraînant la lune avec elle : on voit 
qu’à cet instant la lune, placée en L, n’est pas encore pleine, 
et qu’il faut, pour que cette phase se produise, qu’elle arrive 
en L' sur le prolongement de ST. La période des phases a 
donc une durée plus longue, par suite du mouvement de
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la terre; mais la lune n’en présente pas moins à. nos yeux 
la même succession d’aspects divers.

250. Détails sur les phases. — Lorsqu’on observe la lune 
dans une lunette, au moment où elle présente la forme d’un 
croissant ou d’un demi-cercle, on remarque que la demi- 
circonférence du contour apparent est toujours très-nette et 
très-régulière, tandis que la courbe que détermine sur le dis­
que le cercle d’illumination n’est pas nette; elle est dentelée 
et profondément découpée. Cette circonstance est facile à 
expliquer. En etf'ot, choisissons, par exemple, l’époque du 
premier quartier : soient S et L (fig. 88) les sections faites dans 
le soleil et dans la lune parle plan mené par SL perpendicu­
lairement à la droite LT qui va de la lune à la terre : ahbe est le 
contour apparent delà lune, et aLb est la trace du cercle d’illu­
mination perpendiculaire à SL. Or, au delà de ce cercle, aucun 
rayon du soleil ne peut arriver sur la lune; il y a obscurité 
complète dans toute ia partie aib de la sur­
face. Mais les points a, b.... du cercle lui- 
même ne reçoivent qu’un seul rayon qui 
rase la surface. Le points c, d,.., d’un au­
tre cercle voisin, parallèle au premier, ne 
reçoivent que les rayons qui émanent de la 
partie du soleil située au-dessus de leur ho­
rizon cK, dl. On voit donc que la lumière 
devra être extrêmement faible le long du 
cercle ab, et qu’elle devra aller croissant ra­
pidement, à mesure qu’il s’agira de petits 
cercles cd plus éloignés de ab. Plus loin, les 
points recevront toute la lumière du soleil, 
mais sous une incidence très-oblique ; l’in­
tensité croîtra encore; et enfin les points h 
seront le plus vivement éclairés. Or ces points appartiennent 
précisément au contour apparent : ce demi-cercle devra donc 
nous apparaître régulièrement illuminé presque dans son 
entier. Ajoutons que la surface de la lune offre presque par­
tout des montagnes considérables, et que les sommets de 
celles qui sont dans le voisinage de ab peuvent être plus

Fig. 88.
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éclairés que ne le sont leurs bases : c’est ce qui donne lieu 
aux découpures profondes qui accompagnent la projection du 
cercle d’illumination.

Ces dentelures sont surtout sensibles avant le premier et 
après le dernier quartier; mais elles allectent le contour ap­
parent, lors de la pleine lune, époque à laquelle les deux, 
cercles se confondent.

§  I I I .  —  L u m i è r e  c e n d r é e .

2 o l .  L umière cendrée. — Lorsqu’on observe attentivement 
la lune quelques jours avant le premier quartier, ou quelques 
jours après le dernier, c’est-à-dire lorsque le croissant est en­

core très-étroit, on voit distinctement le 
reste du disque éclairé par une lumière pâle, 
très-faible, qu’on appelle la lumière cendrée. 
Seulement le diamètre de cette partie 
paraît plus petit que celui qui joint les cor­
nes. La lune présente alors à peu près l’as- 

Fig. 89. pect jjg ja pg gĝ  ACBDA est la portion 
éclairée directement, et ADBEA est la portion éclairée par la 
lumière cendrée. Cet effet de lumière disparaît toujours avant 
le premier quartier, et ne se manifeste qu’après le dernier.

21)2. PnASES de la terre rouR la lune. — On peut donner 
une explication  sim ple de ce phénom ène, qui montrera m ieux

encore ce qu’a de réel l’hy­
pothèse que nous avons 
faite de l’opacité de la lune 
et de son illumination par 
le soleil. En effet, la terre, 
elle aussi, est un corps opa­
que qui doit réfléchir dans 
l’espace la lumière qu’elle 
reçoit du soleil; elle est 

donc une lune pour la lune, et elle doit l’éclairer, comme 
la lune l’éclaire elle-même. Si l’on se reporte à la flg. 86, on 
voit aisément que, lorsqu’il y a pleine lune pour la terre, il y

Fig. 90



a nouvelle terre pour la lune; et que, lorsqu’il y a nouvelle 
lune pour celle-là, il y a pleine terre pour celle-ci. En général, 
les phases de la terre sont complémentaires de celles de la 
lune; car soient T et L (fig. 90) les centres de la terre et de la 
lune, situés, ainsi que le centre S du soleil, dans le plan de 
l’écliptique : les deux cercles d’illumination II' et «'sont pa­
rallèles, à cause de la distance très-grande du soleil : les deux 
cercles du contour apparent CD, cd, sont parallèles aussi, 
comme perpendiculaires à la même droite TL; donc les an­
gles CTI, cLî sont égaux, et par suite les angles CTI, cLi' sont 
supplémentaires ; donc les fuseaux, dont ces angles sont les 
projections et les mesures, sont eux-mêmes supplémentaires; 
et comme ces fuseaux représentent, pour chaque astre, la 
partie à la fois éclairée et visible pour l’autre, il s’ensuit que 
leurs phases au même instant sont, en quelque sorte, le 
complément l’une de l’autre.

253 . E x p l ic a t io n  d e  l a  l u m i è r e  c e n d r é e . — Cela posé, pen­
dant les jours qui précèdent ou qui suivent la néoménie, la 
phase lunaire étant un croissant très-étroit pour la terre, la 
phase terrestre a une étendue très-large pour la lune. La 
terre peut donc envoyer sur la lune une partie de la lumière 
qu’elle reçoit du soleil : et c’est cette lumière qui, réfléchie à 
son tour sur la partie obscure de la lune, nous la rend visible. 
On comprend que les rayons réfléchis sur les bords ne peu­
vent nous revenir en assez grande quantité, â cause de leur 
obliquité; et c’est ce qui fait paraître le diamètre de la partie 
obscure moins grand que celui delà partie éclairée (1). On 
comprend, aussi, qu’à mesure que la lune s’éloigne de la néo­
ménie, son croissant grandit, et la phase correspondante de 
la terre diminue; de sorte que bientôt la lumière réfléchie 
par celle-ci n’est plus suffisante pour rendre visible la partie 
non éclairée directement du disque lunaire. Voilàpourquoilalu- 
mière cendrée n’est visible que vers l’époque de lanouvelle lune.

(1) On peut dire aussi qu’en général un même objet, par l’effet de l’irradia­
tion, paraissant d’autant plus grand qu’il envoie plus de lumière, la partie 
éclairée directement doit nous sembler plus grande que celle qui réfléchit la 
lumière cendrée.
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234. La lune reçoit sa lumière du soleil. — On voit com­
ment la lumière cendrée fournit une preuve de l’opacité de la 
lune; on peut d'ailleurs, par une mesure directe, prouver 
que cet astre est réellement éclairé par le soleil. Car, si 
(Gg. 8G) on abaisse une perpendiculaire I’G sur CD, DG sera 
évidemment le diamètre de la partie éclairée directement et 
visible; or DG est le sinus-verse de l’angle l'L3D, c’est-à-dire 
de l’angle STL,, que l’on peut toujours connaître à priori. On 
pourra donc vérifier, à chaque instant, si les diamètres appa­
rents de la partie éclairée sont proportionnels aux sinus-ver- 
ses des angles STL formés par les rayons visuels qui vont au 
soleil et à la lune; c’est ce qui a lieu en effet. Ce résultat 
prouve, en même temps, que la lune est à peu près sphérique.

CHAPITRE II

MOUVEMENT PROPRE DE LA LUNE.

Pévolution sidérale et synodique. —  Orbite décrite par la lune autour de 
la terre.

§  I. —  M o u v e m e n t  c i b c c l a i r b  t e  la l u n e .

£ 3 3 . Déplacement de la lune a travers les étoiles. — La 
description que nous avons faite du phénomène des phases 
contient la preuve évidente du mouvement propre de la lune. 
Car, tandis qu’une étoile passe perpétuellement au méridien 
à la même heure sidérale, on voit le passage de la lune retar­
der chaque jour de plus de trois quarts d’heure (de 6 heures 
en 7 à 8 jours). Cet astre se déplace donc, parmi les étoiles, 
en s’avançant vers l’orient, comme le soleil, mais avec une 
vitesse angulaire beaucoup plus rapide. Ce déplacement, 
d’ailleurs, est sensible au bout de quelques heures; et il suffit, 
pour le reconnaître, d’examiner au milieu de quelles étoiles



la lune sc trouve placée à 8 heures du soir et à minuit, par 
exemple.

25G. Étude du mouvement propre de la lune. — Pour étu­
dier ce mouvement, on emploie le procédé qui a déjà servi 
pour tracer l’écliptique (n° 115) : on détermine chaque jour, 
ou du moins aussi souvent qu’il est possible, l’ascension 
droite et la déclinaison du centre de la lune, en corrigeant 
chaque observation de l’erreur due à la réfraction et à la pa­
rallaxe ; et l’on construit graphiquement sur un globe, ou l’on 
calcule trigonométriquement, le lieu des positions successives 
que ce centre paraît occuper sur la sphère céleste.

2 5 7 . Diamètre apparentde la lune. — Mais une difficul té se 
présente dans ces mesures. La lune n’est pas toujours entière­
ment visible, comme le soleil ; et l’on ne peut pas alors dé­
duire les coordonnées de son centre des observations faites 
successivcmentsur les deux bords opposés du disque (n° 116) ; 
car, en général, un seul des deux bords est visible à  un mo­
ment donné. Il faut donc avoir recours à un autre moyen. On 
mesure, dans ce but, le diamètre apparent de la lune ; mais, 
comme ce diamètre varie assez sensiblement, même en vingt- 
quatre heures, on doit le mesurer au moment même où l’on 
fait l’observation de l’un des bords du disque. Il semble, au 
premier abord, que cela est impossible. Mais si l’on remarque 
que, dès qu’on aperçoit la lune, on voit toujours une des 
deux moitiés de son contour circulaire, on comprend qu’on 
peut toujours mesurer, à l’aide de l’héliomètre (voy. note ni), 
l’angle compris entre les deux points diamétralement oppo­
sés de cette demi-circonférence, et obtenir ainsi à un instant 
quelconque le diamètre apparent.

Cela posé, si l’on veut déterminer la hauteur méridienne 
du centre de l’astre, on mesure, au cercle mural, la hauteur 
méridienne du seul bord inférieur ou supérieur qui soit visi­
ble ; et on lui ajoute, ou l ’on en retranche, suivant les cas, le 
demi-diamètre apparent. Si, de même, on veut déterminer 
l’ascension droite du centre, on mesure l’ascension droite de 
celui des deux bords, oriental ou occidental, qui est visible, et 
onlui ajoute ou l'on en retranche le demi-diamètre apparent.

CTTAPJTRE I I .  —  MOUVEMENT PROPRE DE LA LUNE. 1 Pi
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238. Mouvement circulaire de la lune. — La construction 
géométrique sur un globe, ou le calcul du lieu des positions 
de la lune, à travers les étoiles, montre que :

La lune paraît décrire, d'occident en orient, un grand cercle 
de’, a sphère céleste, incliné à l’écliptique.

Mais ce grand cercle n’est autre que l ’intersection de la 
sphère par le plan dans lequel l’astre se meut : et ce résultat 
ne nous apprend rien sur l’orbite môme de la lune, si ce 
n’est qu’elle est plane.

Comme il est toujours plus simple de rapporter à l’éclip­
tique les mouvements des corps du système solaire, on déduit, 
par le calcul, les longitudes et latitudes de la lune, de ses as­
censions droites et déclinaisons observées (note i). Ce sont 
ces coordonnées dont on étudie la marche, et qui fournissent 
les éléments propres à déterminer le grand cercle que l’astre 
décrit.

280. Ligne des ncecds. — On appelle ligne des nœuds delà 
lune la droite d’intersection de son orbite avec l’écliptique. Le 
nœud ascendant St est le point où la lune traverse l’écliptique, 
pourpasser de l’hémisphère austral dans l’hémisphère boréal; 
le nœud descendant 13 est le point opposé, où la lune passe de 
l’hémisphère boréal dans l’hémisphère austral. On détermine 
chacun d’eux de la même manière qu’on a déterminé les 
points équinoxiaux (n° 125) ; ainsi on choisit les deux observa­
tions méridiennes consécutives pour lesquelles la latitude delà 
lune est d’abord australe, puis boréale; et l’on calcule, par 
une proportion, l’instant où elle est nulle, et la longitude de 
l’astre à ce moment. Ou a ainsi la longitude du nœudasccendant. 
On obtient de la même manière celle du nœud descendant, et 
l’on vérifie que les deux longitudes diffèrent de 180 degrés. 
Ces nœuds rétrogradent comme les points équinoxiaux, mais 
bien plus rapidement; car ils font leur révolution en 0793,.,30 
ou 18 ans f environ.

2 0 0 . Inclinaison de l’orbite. — L'inclinaison de Vorbite sur 
l’ecliptique s’évalue, comme l’obliquité de l’écliptique elle- 
même sur l’équateur, soit en mesurant la plus grande latitude 
de la lune, soit par le calcul (note xi). On trouve qu’elle est



égale à 5° 8' 47",9 ; et qu’elle est, comme l’obliquité, à peu près 
invariable. Toutefois ce nombre n’est qu’un valeur moyenne, 
autour'de laquelle oscille 
l’inclinaison pendant la du­
rée d’une lunaison. Elle at­
teint un minimum de 5° O'I", 
chaque fois que la lune est 
dans les syzygies, et un 
maximum de 5° 17' 35", cha­
que fois que la lune est 
dans les quadratures.

Quant à l’inclinaison do 
cette orbite sur l’équateur, 
elle varie entre 18° 18' et 
28° 40' environ, dans l’intervalle de 18 ans § environ.

Ainsi (lig. 91) EE' représentant l’équateur, et CC' l’éclip­
tique, LL'est l’orbite de la lune, et £1 et Si sont les nœuds.

261. R emarques. — 11 esté remarquer que lalunc,en vertu 
de son mouvement propre combiné avec le mouvement 
diurne, doit nous paraître décrire autour de nous, comme le 
soleil, une courbe en spirale, dont les spires sont moins ser­
rées; et que, par conséquent, le temps de sa présence au- 
dessus de notre horizon dépend, comme la durée de la jour­
née solaire, de sa position dans son orbite, et de notre position 
à la surface de la terre. On peut construire ou calculer cette 
durée par les méthodes qui ont servi pour déterminer le rap­
port du jour à la nuit (n° 197).

On voit enfin que la lune, lorsqu’elle atteint ses plus gran­
des latitudes, peut s’éloigner de l’horizon plus que le soleil.

§ II. —  D urée de la révolution de la lune.

262. R é v o l u t io n  t r o p iq u e  d e  l a  l u n e . — On appelle révolu­
tion tropique de la lune l’intervalle de temps compris entre 
deux retours de l’astre à la môme longitude. On détermine 
celte durée, comme on l’a fait pour l’année tropique (n° 159); 
on calcule, pour deux époques suffisamment éloignées, le

13
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moment où la longitude est nulle, par exemple ; et l’on divise 
le temps écoulé par le nombre des révolutions, qui est facile 
à obtenir. On trouve ainsi, pour la révolution tropique, 
27*- *•»-,321582, ou 27*,7A 43m 4*,'7.

203. Révolution sidérale. — On nomme révolution sidérale 
le temps que la lune met à revenir à la même étoile. Celle 
durée ne différerait pas de la précédente, si le point T , ori­
gine des longitudes, ne rétrogradait pas sur l’écliptique. 
Mais cette rétrogradation doit évidemment diminuer la durée 
de la révolution tropique. La révolution sidérale est donc un 
peu plus longue que la précédente : on peut la déterminer de 
la même manière que l’année sidérale (n° 2 1 1 ), par une pro­
portion; et l’on trouve pour sa valeur 27*-"‘- m#»-,321661, ou 
27* 7*43” 11*,5.

204. V itesse angulaire moyenne de la lune. — On peut dé­
duire de là la vitesse angulaire diurne de la lune, ou son mou­
vement moyen par jour. Car, si elle parcourt les 360 degrés 
de sa circonférence en 27*,321661, elle parcourt en un jour

360° ou 13° 10’ 33" (1). Tel est l’arc qu’elle décrit par jour,
J t 4 j O —  l U O l

en moyenne, à travers les étoiles. On a vu que le soleil ne dé­
crit dans le même temps que 59'8" seulement : le mouvement 
angulaire de la lune vaut donc plus de treize fois celui du 
soleil.

265. Révolution synodique. — La révolution synodique de la 
lune est l’intervalle de temps compris entre deux pleines 
lunes consécutives, ou, en général, entre deux phases de 
même espèce. On donne à cette durée le nom de mois lunaire 
ou de lunaison : elle comprend une période complète des pha­
ses. D’après ce qui a été dit (n° 249), on sait déjà qu’elle est 
plus longue que la révolution sidérale, parce que la terre, 
pendant cette dernière durée, n’est pas restée immobile. Re­
portons-nous à la ligure 87 (p. 186), dans laquelle T est la 
position de la terre à l’époque d’une première pleine lune L,

( I)  En  convertissant cet arc en temps, on trouve 52D40* environ pour le 
retard diurnede la lune sur les étoiles, eu négligeaut toutefois l’inclinaison 
de l’orbite de la lune sur l’équateur.
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et T sa position à l’époque d’une seconde pleine lune L'. Dan 
l’intervalle, la lune a parcouru une circonférence entière ou 360 
degrés, plus l’arcLL', qui mesure l’angle LT'L'ou le mouvement 
angulaire TST' de la terre pendant le même temps. Or, on 
connaît la vitesse angulaire moyenne de la terre en un jour

360°solaire moyen ; elle est V =  ̂ — —- ; on connaît aussi celle
o d o , z 5 üoo

360°

de la lune, qui est Y' =  — ^ ; ^  | . Si donc on désigne par x

la durée de la révolution synodique, on voit que, pendant ce 
temps, le mouvement angulaire de la lune est l ’arc Yx,  et 
celui de la terre est l’arc Va;.- on doit donc avoir l’équation

ou

ou

2 6 6 . Mesure directede la révolution synodique,de laquelle 
on déduit la révolution sidérale. — Nous avons, dans ce cal­
cul, fait abstraction des petites inégalités qui affectent le mou­
vement de la lune; nous l’avons supposé circulaire et uni­
forme, et nous avons déduit la révolution synodique de la 
révolution sidérale. En fait, c’est l’inverse que font les astro­
nomes. 11 leur est facile, en effet, de mesurer d’abord la durée 
précise de la période des phases, au moyen des éclipses de 
lune : car nous verrons que ces éclipses ont toujours lieu au 
moment de la pleine lune; par suite, en déterminant les épo­
ques exactes de deux éclipses séparées par des milliers de ré­
volutions synodiques, et en divisant par leur nombre l’inter­
valle de temps compris entre elles, ils obtiennent la durée 
moyenne d’une lunaison 129/,530588. Puis ils en déduisent 
la révolution sidérale de la manière suivante. Soit a; la durée
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cherchée, et soit t la lunaison : le mouvement angulaire de la 
terre est Vfpendant ce temps, et celui de la lune est360°+Vf. 
Or, si la lune parcourt 360° -f- Vf en un temps f, quel temps x 
mettra-t-elle à parcourir 360”? On trouve la réponse dans la 
proportion

t  _  a d’où x =  27i,321661 (I).
t 360° + Vf’ w

§  III.  —  Mouvement elliptique de la lune.

267. D i a m è t r e  a p p a r e n t  d e  l a  l u n e . — Si l’on mesure, à 
diverses époques, le diamètre apparent de la lune (n° 237), 
on trouve qu’il ne conserve pas toujours la même valeur : il 
varie entre deux limites extrêmes, qui sont 33'34"-et 29’26".

Il faut en conclure que la lune ne décrit pas un cercle dont la 
terre occupe le centre.

On voit même que les variations de distance sont propor­
tionnellement plus grandes pour la lune qu’elles ne le sont 
pour le soleil, puisque les variations de son diamètre apparent 
sont plus considérables. A la distance moyenne, le diamètre 
apparent de la lune vaut 31’8", nombre un peu inférieur au 
diamètre moyen (2).

266. L o i  d e s  a i r e s . ■— On peut évaluer la vitesse angulaire 
de la lune, pour chaque jour, par des procédés analogues à 
ceux que nous avons indiqués pour le soleil (n°135), c’est-à- 
dire, en calculant, par les formules de la trigonométrie sphé­
rique, l’arc décrit par la lune sur son orbite circulaire en 
vingt-quatre heures sidérales. On reconnaît que cette vitesse 
est proportionnelle au carré du diamètre apparent.

11 faut en conclure (n° 139) que les aires décrites par le rayon 
vecteur de la lune sont proportionnelles aux temps employés à. les 
décrire.

269. O r b i t e  e l l i p t i q u e . — On peut aussi, à  l’aide des vi­
tesses angulaires et des diamètres apparents correspondants,

(1) Voir la note n i ,  à la fin du volume.
(2) V oir la  n o te  x x ii , à  la  fin  d u  v o lu m e.



construire (n° 137) une ccurbe semblable à celle que décrit la 
lune autour de la terre, ou calculer ses éléments par l’ana­
lyse.

On reconnaît ainsi que la lune décrit une ellipse dont le centre 
de la terre occupe le foyer.

2 7 0 .  E xcentricité, périgée, apogée, révolution de la ligne 
des apsides. — On détermine l’excentricité de cette ellipse et 
la position du périgée et de l’apogée par les méthodes qui ont 
servi pour le soleil (n° 141). On trouve que l’excentricité 
d  — 0,05190807 ou environ Elle est plus de trois fois plus 
grande que celle de l’orbite terrestre : ainsi l’ellipse lunaire 
<ti£fère plus d’un cercle que celle de la terre.

Quant au périgée, on trouve que sa position n’est pas plus 
invariable que celle du périgée solaire : il a même un mouve­
ment beaucoup plus rapide, puisqu’il exécute sa révolution 
complète, dans le sens direct, en 3232?,57, ou en un peu moins 
de 9 ans. Ce mouvement n’est pas uniforme; il se ralentit 
pendant que celui de la lune s’accélère. C’est à ce phénomène 
que l ’on donne le nom de révolution de la ligne des apsides. 
Ainsi il faut concevoir que l’ellipse lunaire se déplace dans 
son plan, en tournant d’occident en orient, autour de celui de 
ses foyers où se trouve la terre. La longitude du périgée était 
99° 51'52", 1, le 1er janvier 1850 (1).
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CHAPITRE I U

DISTANCE DE LA LUNE A LA TERRE ; SES DIMENSIONS, SA 
MASSE, SA DENSITÉ.

§ 1. — P arallaxe de la lune.

2 7 1 .  Mesure de la parallaxe delà lune. — Concevons que 
deux observateurs, p lacés sous un m ôm e m érid ien , à une

(1) Voir la note xxm, à la fin du volume
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grande distance l’un de l’autre, mesurent simultanément les 
distances, zénithales méridiennes de la lune. Soient (fig. 92) : 
PEP'E' le méridien commun aux deux observateurs, A et A' 
leurs positions; soient EU'la trace de l’équateur sur le méri­
dien, et S la position de l’astre au moment du passage. On

Fig. 92.

connaît, dans le 'quadrilatère AOA'S, les angles OAS, OA'S, 
suppléments des distances zénithales observées, et l’angle 
AOA', somme des latitudes des lieux d’observation : on en dé- 
duitl’angle ASA'. Puis un calcul trigonométrique élémentaire 
permet d’en conclure la parallaxe horizontale de la lune à 
l’époque de l’observation (1 ).

Cetlc méthode a été appliquée par l’abbé Lacaille, en 1756, 
à la détermination des parallaxes de la Lune et des planètes 
Vénus et Mars. Il observait au cap de Bonne-Espérance, tan­
dis que d’autres astronomes opéraient simultanément à Paris, 
à Greenwich, à Bologne, à Berlin, à Stockholm, etc. Ges di­
vers observateurs n’étaient pas placés sous le môme "méri­
dien ; mais on corrigeait aisément par le calcul le défaut de 
coïncidence (v. note XXIV).

Lacaille trouva ainsi, pour valeur moyenne de la parallaxe 
horizontale de la lune, P' =  5 7 '=  3420 ", avec une incerti­
tude d’une demi-seconde environ.

2 7 2 .  Correction des hauteurs observées. — Cette parallaxe

(1) Voir la note xxiv, à la fin de-volume,"



est beaucoup plus considérable que celle du soleil. Il sera 
donc fort important de réduire toutes les observations de hau­
teur et de distance zénithale de la lune à ce qu’elles seraient 
au centre de la terre, pour les rendre comparables entre 
elles; ce sont ces corrections que nous devons supposer effec­
tuées dans les mesures mentionnées aux deux chapitres pré­
cédents. Elles sont d’autant plus nécessaires, que c’est autour 
du centre de la terre que la lune exécute sa révolution, sui­
vant les lois de Képler.

2 7 5 . Variations de laparallaxe. — La parallaxe horizon­
tale moyenne de la lune varie sensiblement avec le rayon de 
la terre ; elle est maximum à l’équateur et minimum au pôle. 
La valeur donnée plus haut, 57', correspond, comme c’est 
l’usage, au rayon de l’équateur. A Paris, la parallaxe hori­
zontale moyenne est seulement 56' 53",5 ; au pôle elle est 
50' 48",5. De plus, au même lieu, elle varie avec la distance 
de la lune à la terre. C’est ainsi que son maximum est 61' 27", 
et que son minimum est 53' 53".
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§ II . —  D istance de la ldne a la terre .

2 7 4 .  Distance moyenne. — En raisonnant com m e on l ’a fait 
pour le soleil (n° 176), on aura, pour la distance moyenne d  
de la lune à la terre, la formule

d  = 206265
~342tT

r — 60,273r,

r étant le rayon de l’équateur terrestre. Cette distance est, h 
très-peu de chose près, la 400° partie de la distance de la terre 
au soleil.

Comme il y a sur le diviseur une incertitude d’une demi-

seconde, et par suite une erreur relative moindre que
CüOü’

1 erreur absolue du quotient est environ —— de 00,273r, ou
6000

1 .
100 r’ °U kilomètres, ou jg lieues à peu près. On voit
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que cette distance est connue avec une grande approximation. 
On dit d’ailleurs, en nombres ronds, qu'elle vaut GO rayons 
terrestres.

Si l’on réduit sa valeur en kilomètres ou en lieues de poste, 
on trouve d  =  384352 kilomètres, ou 96088 lieues de poste.

On conclut de là que la distance apogée est d  (1 +  e') 
=  63, 582r, et que la distance périgée estd'(l — e') =  56,9G4>\

§  I I I .  —  D ’.u e s s io x s  dz  l i  l u n :î.

2 7 o .  Rayon te la lune. — Raisonnons encore, comme 
dans la théorie du soleil (n° 178) ; le demi-diamètre apparent 
de la lune, vu de la terre, à la distance moyenne, est 15' 34" 
ou 934" (n° 267) : le demi-diamètre apparent de la terre, vu 
de la lune, à la môme distance, ou la parallaxe lunaire est 
3420". Donc, en désignant par r' le rayon de la lune, on a :

r' 934
r =  3420 =  0,273  ; d’°Ù ^ =  0,273r<

Le rayon de la lune n'est donc guère plus du quart de celui de la 
terre: on peut dire, avec une approximation très-grande, qu’il 
en est les

2 7 6 .  Surface et volume de la lune. — Par suite, sa surface 
s'=  0,2732 X  s =  0,0743 s =  de s ;  et son volume v' =  

0,2733 X  v — 0,0204 v, ou environ 
^ du volume de la terre.

2 7 7 .  Pourquoi la lune parait plus

GROSSE a L’HORIZON QU’AU ZÉNITH. — Il
nous faut expliquer ici une singulière 
illusion de nos sens. A mesure que la 
lune s’élève sur l’horizon, par suite du 
mouvement de rotation diurne de la 
terre, elle se rapproche réellement de 

l’observateur. Car supposons, pour simplifier le calcul, qu’elle 
passe au zénith six heures environ après son lever ; soient 
(fig. 93) T la terre, A la position de l’observateur, LL' l’arc



de cercle que le mouvement diurne fait décrire à la lune de
. fl* .l’horizon au zénith, en six heures, autour du centre T. Puis­

que TL'= TL, la distance AL', différence entre TL et TA, est 
plus petite que AL. Si l’on désigne par r le rayon TA de la 
terre, on a AL' =  60,273?-— ?- =  39,273 r; et dans le triangle 
rectangle ATL,

AL =  v'GO,273V2 — r2 =  r ^60,273-2 — 1, 

ou, en employant la méthode abrégée,

AL =  - x j u m - s L ) »  60.205,.

Par conséquent, si 8 et S1 sont les diamètres apparents de la 
lune à l’horizon et au zénith, on a :

S1 60,263 „ , 8' — S 0,992 992
8 “  39^273’ ‘ °U 8 — 59,273 ~  59273'

En prenant pour 8 la valeur 31' 8" ou 1868", correspondante 
à la distance moyenne, on a :

009
81 — S =  de 1868" =  31".

ol) 2*73

Ainsi le diamètre apparent de la lune est plus grand de 31" au 
zénith qu’à l’horizon. C’est ce que démontrent, en effet, les me­
sures directes du diamètre horizontal, à l’époque de la pleine 
lune.

Cependant le témoignage de nos yeux paraît donner un dé­
menti à ce résultat; la lune nous semble plus grande à l’ho­
rizon qu’au zénith. Cette illusion est produite principalement 
par la forme surbaissée de la voûte céleste. On sait, en effet, 
que l’atmosphère qui nous environne a la forme d’une sphère 
concentrique avec la terre, et qu’elle n’a qu’une faible épais­
seur de 50 kilomètres au plus ; par suite, le plan de l’horizon 
en détache un segment, dont la flèche est 15 ou 16  fois plus 
petite que le rayon de base (note XI). Cette voûte surbaissée, 
éclairée par la lumière émanée de tous les astres extérieurs, 
est pour nous un tableau transparent, sur lequel le ciel vient
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se dessiner en perspective. Deux étoiles, par excmple(fig.!M), 
qui sont succesivement au zénith en B et en B', et à l’horizon, 
en A et en A', sont vues dans ces deux positions sous le même 
angle AMA’ =  BMB', puisque leur distance angulaire ne varie 
pas ; mais l’arc AA' se dessine en aa', tandis que l’arc égal BB' 
se projette plus près en bb' : puisque nous voyons l’arc bU plus

près de nous que 
ad, nous devons lo 
juger aussi plus pe­
tit. L’effet de l’at­
mosphère est donc 
de nous faire paraî­
tre les distances li­
néaires des astres 
plus grandes à l’ho­
rizon qu’au zénith, 
parce qu’elle nous 
les fait paraître plus 
loin, bien que leurs 
distances angulaires 

n’aient pas varié. Il doit en être de même du diamètre appa­
rent de la lune : Lien qu’il soit réellement im peu plus grand 
au zénith qu’à l’horizon, comme l’astre nous paraît beaucoup 
plus près de nous dans le premier cas que dans le second, 
nous le jugeons, au contraire, plus gros à l’horizon qu’au 
zénith.

Cette illusion est d’ailleurs encore fortifiée par le moindre 
éclat de la lune à l’horizon. Car ses rayons, traversant une 
couche d’atmosphère beaucoup plus volumineuse et très- 
chargée de brumes, présentent l’effet d’une lumière qui s’af­
faiblirait en s’éloignant de nous.

On peut remarquer, enfin, qu’à l’horizon, entre l’astre et 
l’œil de l’observateur, se trouvent des arbres, des objets éloi­
gnés, qui peuvent servir de repère pour apprécier la distance; 
et que, ces points de comparaison nous manquant lorsque 
l’astre est au zénith, nous sommes portés instinctivement à 
le juger alors plus voisin de nous. Et, comme l’angle optique,
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que nous nommons le diamètre apparent, est 5 peu près le 
même dans les deux cas, nous devons invinciblement croire 
la lune plus grande à l’horizon qu’au zénith.

GUAPITRE III .  —  DISTANCE DE LA LUNE A LA TERRE. 203

§ IV. — Masse et densité de la lune.

270. Masse de la lune. — Lerapportde lamasse de la lune 
h celle de la terre prise pour unité ne peut pas se déterminer 
par le rapport des vitesses que les attractions de la lune et de 
la terre impriment, à la môme distance, à un corps qui tombe 
sur chacun de ces astres pendant une seconde. Car la lune n’a 
pas de satellite qui tourne autour d’elle, et dont le mouve­
ment puisse servir à calculer la chute sur elle enuneseconde. 
(Voir la note xvi.) On emploie d’autres moyens que nous ne 
pouvons développer ici, et, entre autres, l’attraction de la 
lune sur les eaux de la mer, attraction qu’on peut évaluer, et 
dont l’intensité est proportionnelle à la masse de notre sa­
tellite.

\
On a trouvé que la masse de la lune ni == =  0,012, la

8 1 ,o
masse de la terre étant prise pour unité.

ffl
279. D ensité de la lune. — La formule D' =  fournira lav

densité moyenne de la lune : il suffira d’y remplacer ni par

0,012, et v' par 0,024. On aura ainsi : D' =  -P’-  =  0,G02.0,024

La densité moyenne de la lune est donc environ les |  de celle 
de la terre, et, par suite, elle est 3,34 par rapport à celle de 
l’eau.
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CHAPITRE IV

TACHES DE LA LUNE ; ROTATION D E LA LUNE SUR ELLE-MÊME ;
LIBRATION.

§ 1. — Rotation de la lune sur elle-mémf.

280. T aches de la lune. — Lorsqu’on examine avec atten­
tion le disque de la lune à l’aide d’une lunette, on reconnaît 
qu’il présente des taches permanentes, auxquelles on a donné 
les noms d’Aristarque, de Tycho, de Copernic, de Képler, etc. 
Mais, contrairement à ce que nous avons vu pour le soleil, 
ces taches paraissent conserver sensiblement la même posi­
tion sur le disque; elles changent peu de forme, et elles 
n’offrent que de légères variations de teintes.

2 8 1 . Tîotation de la lune sur elle-même. — Ondoit conclure 
de ce fait que la lune tournesur elle-même, et qu’elle accom­

plit ce mouvement dans le 
môme sens et dans le même 
temps que sa révolution au­
tour de la terre. Car soient 
T la terre et LL' l’orbite de 
la lune (fig. 93). Lorsque 
l’astre est en L, le contour 
apparent est déterminé par 
le plan CD perpendiculaire 
sur LT ; et, lorsqu’il est en 
L', le contour apparent 
est C'D'. Pour que ces deux 
grands cercles soient une 
seule et môme courbe tra­

cée sur lalunc, il faut évidemmentque le plan de cette courbe 
ait tourné comme a tourné le contour apparent lui-même, 
c’est-à-dire de l’angle CL'C'. Or, cet angle est égal à l ’an­
gle LTL', mouvement angulaire de l’astre sur son orbite. 
Donc, à chaque instant, la lune tourne sur elle-même d’un

Fig. 9à.



angle égal à son mouvement angulaire autour de la terre. 
D’ailleurs, celte rotation a lieu évidemment de droite à gau­
che ou d’occident en orient. Donc :

La lune tourne sur elle-même d'occident en orient, en 27>, 391661, 
temps pendant lequel elle accomplit, dans le même sens, sa 
révolution sidérale.

2812. É galité rigoureuse des deux mouvements. — On com­
prend que l’égalité des deux durées doit être parfaitement 
rigoureuse. Car, si l’une était un peu plus longue que l’autre, 
l’accumulation des révolutions finirait par rendre la diffé­
rence sensible ; et l’on aurait dû voir, il y a des siècles, la 
face opposée de la lune. Or les descriptions que nous ont 
laissées les anciens astronomes prouvent qu’ils ont vu la 
môme face que nous. La théorie de l’attraction confirme 
d’ailleurs complètement ce résultat; car elle prouve qu’en 
admettant l’hypothèse probable delà fluidité primitive delà 
lune, ce globe a dû prendre, sous l’action attractive de la 
terre, une forme allongée dans les deux sens opposés, de 
telle sorte que l’excès de poids de la face qui nous regarde 
doit la faire sans cesse retomber de notre côté. Et c’est ainsi 
qu’à leur grand désespoir, les astronomes ne connaîtront ja­
mais l’autre face de la lune.

283 . J ours et  nuits sur la lune. — Si l’on se reporte à la 
figure8G(p. 184), on voit facilement que, dans l’intervalle d’une 
révolution synodique, la lune, en vertu de ses deux mouve­
ments égaux, présente successivement toutes ses faces au so­
leil. Cet intervallecomprend donc, pour un point de l’équa­
teur de l’astre, un jour et une nuit, ayant chacun pour durée 
quinze de nos jours environ. L’accumulation de la chaleur 
pendant un si long jour, le refroidissement pendant une si 
longue nuit, doivent y être considérables. L’habitant de la 
lune n’a jamais vu la terre, s’il demeure sur l’hémisphère 
opposé. Celui qui est précisément situé sur la ligne TL a 
perpétuellement la terre à son zénith. Pour lui, la lumière 
du soleil qui se couche est immédiatement remplacée par 
celle que réfléchit la terre, alors dans son premier quartier : 
à mesure que le soleil s’abaisse au-dessous de son horizon, le
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croissant terrestre augmente, et prend bientôt la forme d’un 
cercle entier, d’une pleine terre, réfléchissant quatorze fois 
plus de lumière que ne nous en envoie la pleine lune :puis le 
croissant se rétrécit, et, lorsqu’il a atteint le dernier quartier, 
le soleil reparaît à l’horizon, de sorte qu’il n’y a jamais de 
nuit obscure pour ce point.

§ II. — Librations de la lune.

284. L ibration. — Lorsqu’on observe attentivement les 
taches de la lune voisines de ses bords, on reconnaît qu’elles 
ont un léger mouvement d’oscillation qui les fait paraître et 
disparaître alternativement. Cette espèce de balancement, 
qu’on nomme libration, n’est qu’une illusion d’optique dont 
on rend compte facilement.

28o. 1° L ibration en longitude. — Si la lune va du périgée 
à l’apogée, on voit les taches du bord oriental disparaître 
successivement, en même temps qu’on en voit d’autres appa­
raître, au bord occidental; comme si l’astre tournait lente­
ment sur lui-même, dans le sens rétrograde, autour d’un axe 
perpendiculaire au plan de son orbite. Puis, au bout d’un cer­
tain temps, le mouvement a lieu en sens inverse; et, à l’apo­
gée, les taches ont repris la position qu'elles avaient au péri­
gée. Après ce moment, l’oscillation continue dans le sens 
direct; c’est le bord oriental qui se découvre, et le bord occi­
dental qui disparaît à son tour; après quelques jours le mouve­
ment s’arrête, puis se produit en sens contraire ; et, au péri­
gée, le disque a repris sa position primitive. Celte oscillation, 
qui a pour période la révolution sidérale, se nomme libration 
en longitude.

28G. E xplication de la libration en longitude. — Cette li­
bration est due à cette circonstance, que le mouvement de 
rotation est uniforme, tandis que le mouvement de translation 
ne l’est pas. Comme la durée de la révolution entière est la 
même pour tous deux, la vitesse angulaire delà translation 
l’emporte, au périgée, sur celle delà rotation; et, par suite, 
la lune, ne tournant pas assez vite sur elle-même, laisse appa­
raître son bord postérieur ou occidental ; cet effet augmente



jusqu’à ce que les deux vitesses soient devenues égales ; puis, 
la vitesse de translation se ralentissant toujours, tandis que la 
vitesse de rotation 
est constante, le bord 
oriental reparaît peu 
à peu. A l’apogée, au 
contraire, la vitesse 
de Totation l’empor­
tant sur celle de 
translation, la lune 
laisse apparaître son 
bord oriental ou an­
térieur, et l’effet augmente jusqu’à ce que la vitesse de trans­
lation, qui croît, soit devenue égale à l’autre; puis le bord 
oriental se cache de nouveau, et, au périgée, l’oscillation ap­
parente a accompli son mouvement.

Cette explicationestrendueplussensibleparlaflgure 96 dans 
laquelle T est la position de la terre, au foyer de l’ellipse LL'L" 
que décrit la lune. Au périgée L, le contour apparent est dé­
terminé par le plan CD ; C est le bord occidental du disque, 
et D le bord oriental. Lorsqu’il s’est écoulé un quart du temps 
de la révolution sidérale, le rayon vecteur de la lune a décrit 
le quart de l’aire de l’ellipse (n° 268); il est donc alors dans la 
position TL', faisant un angle obtus avec TL (le secteur LTL' 
est équivalent au secteur LTL") : le contour apparent est de­
venu C'D' perpendiculaire à L'T. Mais la lune n’a décrit sur 
elle-même, pendant ce temps, que le quart de sa rotation : le 
plan primitif CD est donc venu se placer en RS, perpendicu­
lairement à sa première direction. Par suite, l’observateur, 
placé en T, aperçoit alors le fuseau projeté sur RL'C', qu’il ne 
voyait pas en L ; et il ne voit plus le fuseau projeté sur SL'D 
qu’il voyait d’abord. Le bord oriental s’est donc caché, et le 
bord occidental s’est découvert. A l’apogée, en L", les deux 
mouvements sont arrivés ensemble à la moitié de leur durée; 
les deux plans se confondent de nouveau. Mais en L", après les 
f de 27->,32, ces deux plans sont encore distincts, le contour 
apparent est C"'D"'; et le plan qui occupait la position C"D",
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est venu, par suite de la rotation uniforme, prendre la position 
perpendiculaire R'S'; c’est alors le fuseau oriental S'L"'D"'qui 
est visible, et le fuseau occidental R'L"'C"' qui a cessé de l’être. 
EnCn, au périgée, les deux mouvements ayant accompli 
une révolution complète, les deux plans se confondent de 
nouveau.

L’amplitude de cette oscillation est d’environ 8 degrés : elle 
nous permet d’apercevoir, lanlôtà l’orient, tantôt à l’occident 
un fuseau de huit degrés appartenant à l’hémisphère opposé.

287. 2° L ibration en latitude. — On voit aussi se produire, dans l’inter­
valle d’une révolution sidérale, une autre espèce d’oscillation, qu’on nomme 
libration en latitude. On voit les taches voisines du bord supérieur s’en rap­
procher progressivement et disparaître, en même temps que d’autres taches 
apparaissent au bord inférieur ; puis le mouvement inverse se produit, et les 
taches supérieures redeviennent visibles, comme si l’astre oscillait autour 
d’un axe horizontal situé dans le plan de son orbite.

288. Explication de la libration en latitude. — Cette seconde libration
a pour cause la non-perpendicularité de l’axe de rotation de la lune sur le 
plan de son orbite. Cet axe fait avec ce plan un angle de 83° environ : il 
reste toujours parallèle à lui-même pendant la durée d’une révolution. Il en 
résulte que, suivant les positions de la lune sur son orbite, nous devons dé­
couvrir alternativement une petite région de 0° i  d’amplitude nu delà du 
pôle nord et au delà du pôle sud. La fig 71 (p. 170) peut très-bien servir à 
rendre compte de cette conséquence, en admettant que S représente la terre, 
que T figure la lune tournant autour d’elle, et en supposant que l’axe de 
rotation PP' ne fait qu’un angle de 6° ~ avec AB. Ainsi, dans la position n° 3, 
on voit, du point S, le pôle boréal P et la région PB située au delà ; mais le 
pôle austral P' est caché, ainsi que la région P'A, située en deçà. A mesure 
que la lune s’avance sur son orbite, le pôle P, toujours visible, se rapproche 
du contour apparent, en même temps que le pôle P', toujours invisible; dans 
la position n° 5, ils deviennent visibles tous les deux, et ils font partie du 
contour apparent. Puis le pôle P disparaît, en même temps que le pôle P’ 
paraît s'élever au-dessus du bord inférieur. Au n° 7, l’observateur aperçoit, 
au delà de P', la petite région de 6» - appartenant à l’héniisplière opposé. Puis 
le pôle P' paraît se rapprocher à son tour du contour apparent, et il l’atteint 
au n° 1, en même temps que le pôle P apparaît de nouveau. Enfin, ce der­
nier paraît s’éloigner progressivement du contour apparent jusqu’à la posi­
tion n° 3. *

289. 3° Libration diurne. — Il y a enfin une troisième espèce de li­
bration, beaucoup plus faible que les deux autres : on la nomme libration 
diurne, parce que sa période est l’intervalle d’un jour. Elle est due à ce que
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l’observateur, placé à la surface de la terre, n’est pas au centre du cercle que 
la lune parait décrire en vertu du mouvement diurne, tandis que c’est vers 
le centre de la terre que la lune tourne toujours la même face. Soient donc X 
(fig. 97) le centre de la terre, A la position de l’observateur, L la position de 
la lune à l'horizon; le plan EF perpendiculaire sur TL est le plan qui déter­
mine la face toujours 
tournée vers le cen­
tre, tandis que le 
plan CD perpendicu­
laire sur LA est ce­
lui qui détermine le 
contour apparent vi­
sible pour l’observa­
teur A. Ces deux 
plans sont là dis­

tincts l’un de l’au­
tre ; ils font entre 
eux un angle CLE 
égal à ALT, c’est-à-dire à la parallaxe horizontale do la lune, qui est 1 degré 
environ. Mais, à mesure que l’astre s’élève sur l’horizon, cet angle diminue ! et 
au zénith, en L', les deux plans se confondent en E'F\ Le fuseau CLE, qui 
était visible à l'horizon sur le bord occidental, ne l’est donc plus au zénith ; 
et le fuseau DLF, qui ne l’était pas, le devient à son tour. Puis, à mesure 
que la lune descend, les deux plans se séparent de nouveau ; et à l’horizon, 
en L", on aperçoit, sur le nord oriental, un fuseau F"L"D'' d’un degré, tandis 
qu’un antre fuseau égal C"L"E" a disparu à son tour. Ainsi, le mouvement 
diurne de la lune nous fait apercevoir successivement des régions d’un degré 
sur ses bords opposés, comme si elle tour­
nait lentement autour d’un axe perpen­
diculaire au plan du parallèle céleste 
qu’elle décrit en un jour.

290. Éléments do .mouvement de ro­
tation de la lune. — En soumettant au 
calcul ces trois mouvements apparents, 
on a pu démontrer que le mouvement de 
rotation de la lune sur elle-même est uni­
forme, comme ceux de la terre et du so­
leil. On a trouvé que son axe fait avec 
l’écliptique un angle de 88° 29' ■19", et 
avec son orbite un angle de 83° 20' 49" ; et 
que son équateur coupe l’écliptique suivant une droite parallèle à la ligne 
des nœuds, et qui rétrograde avec elle. Si donc L (fig. 98) est un méridien 
de la lune perpendiculaire à son orbite, PP' son axe, et EE' son équateur, 00  
est la trace de l’orbite, et CG' celle d’un plan mené par son centre parallèle-

cosu. G, 14
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ment à l'écliptique ; et ces trois plans se coupent suivant une même droite 
perpendiculaire au méridien. Ce résultat est une des plus belles découvertes 
de Dominique Cassini.

CHAPI TRE V

CONSTITUTION DE LA LUNE.

Montagnes de la lune; leur hauteur. — Constitution volcanique de la lune. 
— Absence d’eau et d’atmosphère.

291. F obme de la lune. — La lune n’est pas, comme la 
terre, un ellipsoïde de révolution ; l’attraction de la terre pa­
raît avoir allongé celui de ses diamètres qui est dirigé vers le 
centre de notre globe. Lagrange a prouvé qu’on pouvait la 
considérer comme un ellipsoïde à trois axes inégaux; que le 
plus grand est dans l’équateur lunaire et dirigé vers nous; 
que le plus petit est l’axe de rotation, et que l’axe intermé­
diaire est perpendiculaire aux deux autres. La différence 
entre le plus grand et le plus petit parait être quatre fois 
plus grande que la différence entre les deux plus petits.

292. P esantecr a la surface de la lune. — Si l’on désigne 
par g' la gravité à sa surface, c’est-à-dire à une distance r  de 
son centre, le principe de l’attraction permettra de la calcu­
ler, puisqu’on connaît sa masse ni. On sait, en effet, que la 
masse m de la terre produit une gravité g à une distance r de 
son centre : donc une masse ni produira, à la même distance,

une gravité g X  ; et, à la distance r', cette gravité sera

ni r 2 „ ni 1 r  1
g' =  g X  — X  -tj. Or, — =  -— , et-, — —— . On en déduity * m r12 ’ m 81,5 r  0,273
g' =  0, 178 g. Ainsi la pesanteur est à peu près six fois plus
faible à la surface de la lune qu’à la surface de la terre.

295. Montagnes de la lune. — Les taches de la lune pré­
sentent toujours les mêmes circonstances ; mais elles ont une



forme et une intensité très-variables. On voit souvent une 
tache très-prononcée, accompagnée d’une teinte moins 
intense, qui se prolonge d’abord comme une ombre, puis di­
minue et disparaît avec la tache elle-même. C’est à l’époque 
de la pleine lune, c’est-à-dire lorsque la lune reçoit les rayons 
du soleil normalement à la face tournée vers la terre, que les 
taches et surtout les ombres disparaissent.

Les taches les plus intenses sont produites par des cavités 
profondes, au fond desquelles ne pénètre pas la lumière obli­
que du soleil. Les ombres sont dues à de hautes montagnes 
qui entourent souvent ces cavités. Car, lorsqu’on observe la 
lune avec une lunette qui grossit deux cents fois, on remar­
que à sa surface les effets d’ombre et de lumière que doivent 
produire des montagnes élevées, disposées en enceintes cir­
culaires ; souvent, au milieu de ces cirques, s’élève un piton 
à pente roide. De plus, comme nous l’avons dit (n° 250), 
'existence de ces montagnes et de ces cavités est encore dé­
montrée par les dentelures profondes que présente l’arc in­
térieur du croissant lunaire.

Enfin, sur la partie non éclairée du disque, on aperçoit 
quelques points brillants, qui ne peuvent être que des som­
mets de montagnes assez élevés pour être éclairés par les 
rayons du soleil, quoique leurs bases soient plongées dans 
l’obscurité. (Voir, aux planches, la carte de la lune, fig. 131.)

2Î)4. Mesure des hauteurs des montagnes de la lune : pr e­
mière méthode. — On emploie plusieurs procédés pour mesu­
rer les hauteurs de ces montagnes. En voici un qui est appli­
cable au cas où l ’on aperçoit un sommet brillamment éclairé 
sur la partie obscure du disque. Soit L (fig. 99) le disque de 
la lune, à l’époque d’une quadrature ; les rayons du soleil S 
éclairent la demi-sphère CDD, et laissent dans l’obscurité la 
demi-sphère CAD : le cercle d’illumination est déterminé par­
le plan CD perpendiculaire à SL ; et l’observateur se trouve 
sur la perpendiculaire élevée en L au plan de la figure. Soit 
mie point lumineux, sommet de la montagne : puisqu’il est 
éclairé par le soleil, c’est que l'un des rayons lumineux, pa­
rallèle à SL et tangent à la surface de la lune, va le rencon-
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Irer. Or, menons un plan par le diamètre AB et parle point m, 
ce plan coupe la sphère lunaire suivant un grand cercle, et 
contient le rayon tangent dont nous parlons Rabattons ce 
plan, autour de AB, sur le plan du disque ; le grand cercle se 
confondra avec le disque, le rayon lumineux tangent avec la

tangente SD ; etlesommetmde 
la montagne se rabattra en M. 
Si donc on trace ML, la partie 
extérieure MI sera la hauteur 
cherchée. Pour la déterminer, 
concevons qu’on abaisse la 
perpendiculaire mp sur le dia­
mètre CD ; on peut mesurer 
directement cette perpendicu­

laire : car, au moyen d’une lunette, munie d’un réticule à 
deux fils parallèles, on évaluera son diamètre apparent, et 
par suite sa longueur, puisqu’on connaît la distance de la 
lune à la terre. On connaîtra donc, dans le triangle LMD, 
les deux côtés de l’angle droit, qui sont MD =  mp, et LD 
ou le rayon r' de la lune. On pourra donc calculer l’hypo­
ténuse LM, et, en en retranchant r', ou aura pour reste la 
hauteur MI.

Remarquons que cette méthode ne donne pas générale­
ment tyie hauteur assez grande; car le rayon lumineux, tan­
gent à la surface de la lune, ne passe pas par le sommet 
extrême de la montagne; il la coupe, et il en détache une 
partie qui échappe au calcul. D’ailleurs, ce procédé n’est ap­
plicable qu’aux montagnes qui sont voisines du cercle dhllu- 
mination CD; car les autres ne sont pas assez élevées pour 
que leur sommet soit éclairé par le soleil.

2 9 S . Seconde méthode. — Voici un autre procédé, fondé sur 
la méthode géométrique des ombres portées. Soit L (fig. 100) 
la lune en quadrature comme précédemment. Soit mg une 
ombre que l’on voit sur le demi-disque éclairé : elle est pro­
duite par une montagne dont le sommet est projeté en m, et 
elle est perpendiculaire sur CD. On peut mesurer cette om­
bre, ainsi que gp, en mesurant leurs diamètres apparents aveo
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une lunette munie d’un réticule à fils parallèles. Or, que l’on 
conçoive encore le plan qui contient AB et mg, et qu’on le fasse 
tourner autour de AB, pour le rabattre sur le plan du dis­
que ; le point g, qui appartient à la surface lunaire, viendra 
en G ; le rayon lumineux, qui 
va du sommet au point g, et 
qui limite ainsi l’ombre, étant 
parallèle à SL se rabattra 
suivant la parallèle GM, et le 
sommet m viendra en M. Ainsi, 
en traçant ML, MI sera la hau­
teur à mesurer. Or, dans le 
triangle MGI, qu’on peut con­
sidérer comme rectiligne et rectangle en I, on connaît le 
côté GM =  gm; de plus, les angles IGM et GLD sont égaux, 
comme ayant Iescôtés respectivement perpendiculaires :donc 
les triangles GMI et LGP sont semblables, et donnent

C’est par des procédés de cette nature que MM. Beer et Mad- 
ler, de Berlin, sont parvenus à mesurer un grand nombre de 
montagnes à la surface de la lune. Citons parmi les plus
élevées :

Dorfel, dont la hauteur est de. 7603m,
Newton.............................. . r . .  72G4,
Casatus.........................................  6956,
Curtius.........................................  6769,
Calippus......................................  6216,
Tycho........................................... 6151,
Huyghcns....................................  5550,

Le mont Blanc n’a que 4800“ de hauteur.

29G . Constitution volcanique de la lune. — Les montagnes
de la lune sont de deux sortes : les unes se présentent comme 
des cônes ou pics terminés en pointe ; les autres, plus nom­
breuses. offrent l’aspect des cratères de volcan, ayant des ou-
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verlures de douze à quinze lieues de diamètre. On peut citer, 
parmi ces dernières, Tycho et Archimède, qui ont, la première- 
91200 mètres et la seconde 87300 mètres de diamètre. 
Ces montagnes sont les cirques dont nous avons parlé: ils 
sont souvent très-profonds. Sur le contour d’une large ouver­
ture, on en voit quelquefois d’autres plus petites. Ainsi le sol 
de la lune présente l’aspect général de nos contrées volcani­
ques. A l’exception de quelques grandes plaines grisâtres, 
moins brillantes que le reste du disque, on n’y voil qu’acci- 
dents de terrain considérables : le sol paraît avoir été pro­
fondément tourmenté par les actions volcaniques; etil n’olfre 
pas les traces du nivellement, que les eaux et l'atmosphère 
ont lentement produit à la surface de la terre.

2 9 7 .  A b s e n c e  d ’ e a u . — Les plaines grisâtres dont l’éclat est 
moindre que celui des régions montagneuses, et que nous 
avons appelées les taches de la lune, ont été prises par Ilévé- 
lius pour des mers ; et les astronomes leur avaientdonné des 
noms. Mais on a dû revenir depuis à d’autres idées : car les 
lunettes font découvrir, dans ces plaines, des saillies, des 
fentes rectilignes, des cavités rondes, dont la présence ne 
saurait se concilier avec la surface d’une mer. On ne saurait 
admettre, d’ailleurs, que ces accidents seraient au fond des 
mers, et qu’on les verrait à travers l’eau; car la lumière pro­
venant de ces fonds aurait des propriétés d’optique dont elle 
est dépourvue.

2 9 0 .  A bsence d' atmosphère. — On peut prouver, par plu­
sieurs raisons, que la lune n’a pas d’atmosphère. D’abord, si 
cette atmosphère existe, elle ne porte jamais de nuages, 
comme la nôtre : car la lune se présente toujours à nos yeux 
avec le même aspect, et jamais rien ne s’oppose, comme le 
feraient des nuages, à ce que nous observions toute la por­
tion de sa surface, qui est à la fois visible et éclairée par 
le soleil. Cette atmosphère est donc complètement transpa­
rente. Par conséquent, elle doit produire sur la lune un 
phénomène analogue à notre crépuscule (n° 199) : nous 
voulons dire qu’elle doit amener une certaine quantité de 
lumière ditl'use dans la région qui n’est pas directement



éclairée par les rayons du soleil. Il en résulte que, sur une 
certaine étendue, le passage de la lumière à l’obscurité com­
plète doit se faire par une dégradation insensible. Or, nous 
ne voyons rien de tout cela à la surface de la lune : la ligne 
de séparation de l’ombre et de la lumière est toujours nette 
et parfaitement tranchée. Il faut en conclure que l’atmo­
sphère est assez rare pour rendre le crépuscule insensible 
pour nous.

D’un autre côté, l’atmosphère lunaire ne dévie pas les 
rayons lumineux qui la traversent et n’cn affaiblit pas l’inten­
sité. Concevons, en effet, que la lune, en vertu de son mouve­
ment propre, passe entre une étoile et l'œil de l’observateur ; 
elle la fait disparaître, elle Yocculte pendant un certain temps. 
Si, pour plus de simplicité, nous supposons que l’occultation 
soit centrale, sa durée devra être égale au temps que la lune 
met à parcourir un arc égal à son diamètre apparent. C’est, 
en effet, ce que l’on constate toujours. Or, si la lune avait 
une atmosphère réfringente, l’étoile disparaîtrait plus tard et 
reparaîtrait plus tôt, et la durée de l’occultation serait moin­
dre. Car, lors môme que le rayon visuel TS (fig. 101), mené
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de l’observateur à l’astre S, serait intercepté par le disque 
opaque L, le rayon lumineux Sm, pénétrant dans l’atmo­
sphère lunaire en m, serait dévié suivant les lois de la réfrac­
tion, viendrait raser le disque au point A, se courberait en­
core dans le même sens, et, sortant en n, se dirigerait suivant 
nT. L’observateur T verrait donc encore l’astre dans la direc­
tion TnS', qui fait avec mS un angle double de la réfraction 
horizontale en A. Au moment où cette réfraction ne serait



plus suffisante pour amener les rayons en T, l’astre disparaî­
trait subitement sans avoir paru toucher le disque. Par contre, 
il reparaîtrait de l’autre côté, à une certaine distance du dis­
que, avant que la ligne droite T S fût devenue tangente au 
globe. Puisque jamais la durée de l’occultation n’est inférieure 
à celle qui résulte du calcul, puisque l’étoile parait toucher le 
disque lunaire avant de disparaître, il faut en conclure que la 
lune n’a pas d’atmosphère sensible, capable de réfracter les 
rayons lumineux.

299. Conséquences de l’absence d’eau et d’atmosphère. —Si 
la lune n’a pas d’atmosphère, elle ne saurait avoir d’eau : car 
une partie de cette eau, ne supportant aucune pression, se 
vaporiserait et formerait immédiatement une atmosphère, 
dont le poids arrêterait l’évaporation du reste.

Il en résulte encore qu’il n’y a pas de lumière diffuse à la 
surface de la lune, car elle n’est produite que par l’atmo­
sphère ; les ténèbres absolues régnent hors de l’action directe 
des rayons du soleil : la nuit succède immédiatement au jour, 
le froid le plus vif à la chaleur la plus intense; le ciel paraît 
noir; on y voit les étoiles en plein midi, pourvu qu’on abrite 
l’œil des rayons du soleil.

Il est évident que, dans ces conditions, la lune ne saurait 
être habitée par des êtres de notre espèce, et qu’il ne peut y 
avoir à sa surface de végétation analogue à la nôtre.

2 1 6  LIVRE IV. —  LA LUNE.
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CHAPITRE VI

DES ÉCLIPSES DE LUNE.

Éclipses de lune. — Elles ont lieu au moment de l’opposition. — Leur cause. 
— Pourquoi il n’y en a pas lors de toutes les oppositions. — L’éclipse peut 
être'partielle ou totale. — Ombre et pénombre. — Influence do l’atmo­
sphère terrestre.

§ I. — Cause des é c l ip s e s  de l u n e .

5 0 0 .  É clipse de lune. — La terre est tin corps opaque éclairé 
par le soleil ; elle projette derrière elle une ombre, dans la­
quelle les rayons de cet astre ne peuvent pénétrer. Si la lune, 
dans son mouvement autour de nous, entre dans cette ombre, 
elle cesse de recevoir la lumière qui l’éclaire d’ordinaire; elle 
est éclipsée.

501.  O m b r e  p u r e . — Pour étudier cette cause des éclipses 
de lune, nous ferons d’abord abstraction de l’atmosphère de 
la terre, et par conséquent de la déviation qu’elle imprime

aux rayons lumineux. Concevons que l’on coupe les deux 
corps célestes, le soleil et la terre, par un plan passant par 
leurs centres, par celui de l’écliptique, par exemple. Soient 
(fig. 102) S et T les grands cercles ainsi déterminés dans les
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deux globes. Menons une tangente commune extérieure AB à 
ces deux cercles, et supposons qu’elle tourne avec eux autour 
de la ligne des centres TS ; elle engendre, dans ce mouve­
ment, un cône circonscrit aux deux sphères, et dont le som­
met est en O au delà de la terre. La courbe de contact de ce 
cône avec la surface de la terre est un petit cercle BB', que 
l’on peut, à cause de la distance, considérer comme un grand 
cercle perpendiculaire à ST. Toute la partie du cône, com­
prise entre celte base et le sommet O, se nomme Y ombre pure; 
elle ne peut recevoir aucun rayon émané du soleil.

502. P énombre. — Si maintenant on mène aux deux cer­
cles S et T une tangente commune intérieure CD, et qu’on la 
fasse aussi tourner avec eux autour de ST, elle engendre un 
second cône circonscrit, dont le sommet est en 0' entre les 
deux astres, et qui va s’élargissant au delà de la terre. La par­
tie de ce cône qui s’étend dans cette direction, à partir de la 
courbe de contact DD', comprend un espace indéfini, dont cha­
que point ne peut recevoir qu’une partie des rayons émanés 
du soleil : on voit, d’ailleurs, que ce point en recevra d’autant 
moins qu’il sera plus près de l’ombre pure. Il y a ainsi, dans 
celte pénombre, dégradation progressive de lumière.

505 . P hases des éclipses de lune. — On comprend que, si 
la lune entre dans l’ombre de la terre, elle pénètre d’abord 
dans la pénombre; son éclat diminue donc progressivement, 
avant de s’annuler; puis, au bout d’un certain temps, lors­
qu’elle sort de l’ombre pure, elle retrouve la pénombre, et 
son éclat va croissant, jusqu’à ce qu’elle soit arrivée dans la 
région entièrement éclairée par le soleil. L’éclipse propre­
ment dite ne commence qu’au moment où la lune pénètre 
dans lecône d’ombre pure : on voit alors le disque s’échancrer 
de plus en plus par son intersection avec le cône, puis dispa­
raître lorsque l’astre y est entré tout entier : c’est le moment 
de l’éclipse totale. Dans cette période, la lune présente à peu 
près l’aspect deses phases diverses, depuis la pleine lune jus­
qu’à la néoménie; cependant l’arc qui sépare la partie éclip­
sée delà partie qui reste lumineuse est toujours convexe vers 
la partie éclairée comme dans le croissant. Dans la deuxième



période,ces phasesse reproduisent en sens inverse. D’ailleurs, 
la lune peut ne pénétrer qu’en partie dans le cône d’ombre 
pure : alors l’éclipse est partielle.

§  II. —  P ossibilité des éclipses totales de lune.

504. Conditions de possibilité des éclipses totales. — Pour 
qu’une éclipse totale de lune soit possible, il faut d’abord que 
le cône d’ombre pure s’étende au delà de l’orbite de la lune; 
il faut, de plus, qu’à la distance où celle-ci le traverse, la 
section circulaire faite dans le cône présente un diamètre ap­
parent qui surpasse celui de l ’astre. Il est facile de calculer 
ces divers éléments.

50o. L ongueur du cône d’ombre pure. — Si l’on mène les- 
rayons SA, TB (fig. 402), aux points de contact de la tangente 
AB, les triangles semblables OSA, OTB nous donnent :

SO SA SO — TO S A — TB
TO ~  TB ’ °U TÔ ' TB *

Si donc on désigne les rayons du soleil et de la terre par R et 
r, la distance des centres ST par d, et la longueur TO du cône 
d’ombre par x, on a:

d R. — r 
x r ’

d’où x =  d x  _(I)

Or, on a vu que R =  408,556 r, et d — 23280 r en moyenne:
23280 r alc  ,

donc x — ■---- ——, ou x =  246,4 rayons terrestres.107,5a6
Telle est la longueur du cône d’ombre pure, lorsque la terre 
se trouve à la distance moyenne du soleil.

On trouverait facilement, en remplaçant d dans la for­
mule (l) par les distances périgée et apogée, que les longueurs 
correspondantes du cône sont : 212 r et 220 r.

Or, la distance moyenne de la lune à la terre est 60,273 r ; 
sa distance périgée est 56,904 r , et sa distance apogée est
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63,582 r. On voit donc que le cône d’ombre pure.s'étend bien au 
delà de l’orbite de la lune ; celle-ci peut donc y pénétrer dans 
le cours de sa révolution synodique.

5 0 6 .  A n g l e  a u  s o m m e t d u  c ô n e . — Si l’on trace AT (fig. 102), 
que l’on peut considérer comme une tangente au cercle S, 
l’angle BOT est égal à l’angle extérieur ATS diminué de l’angle

S
BAT. Or, l’angle ATS est le demi-diamètre apparent -  du so-

J t

leil, vu du centre de la terre, et BAT est la parallaxe horizon­
tale P du soleil : donc, en désignant par « le demi-angle au 
sommet du cône, ou l’angle BOT, on a :

8
a — -  — P, ou 2a =  S — 2P. (2)

5 0 7 .  D i a m è t r e  d u  c ô n e  d ’o m b r e  a  l a  d i s t a n c e  d e  l a ' l u n e . —  

Si du point T comme centre (fig. 102), avec un rayon TG égal 
à la distance d! de la lune à la terre, on décrit dans le cône une 
portion de surface sphérique LL', /'angle LTL' est le diamètre 
apparent : l’angle OTL, moitié de ce diamètre, est égal à 
l’angle extérieur BLT, diminué de l ’angle LOT. Or, BLT est 
la parallaxe horizontale P' de la lune, LOT est l’angle a. Donc

ê =  F - « ,  o u ê = F - f -  p - i ,  (3)

en remplaçant a par sa valeur (2).
Pour avoir la valeur maximum de 6, il faudra remplacer F

g
par sa valeur maximum G1'27", et -  par sa valeur minimum

2

15' 45", 1. Pour avoir la valeur minimum de 6, il faudra, au

contraire, remplacer P' par sa valeur minimum 53'53" et -
’ 2

par sa valeur maximum 16'18", 1. Enfin la valeur de 6, à ladis- 
tance moyenne, résultera des valeurs correspondantes de P' 

S
et de - ,  qui sont 57' et 16'3" ; d’ailleurs, on peut regarder P 

comme constante et égale à 8",86. On trouve ainsi :

9 2 0

S
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Valeur maximum =  45' 50", 8.
Valeur moyenne =  41' 5", 8.
Valeur minimum — 37' 43", 7.

Or, le demi-diamètre apparent de la lune n’est jamais au- 
dessus de 16’ 47". Donc la lune peut pénétrer entièrement dans 
le cône d’ombre pure, et les éclipses totales sont possibles.

§ III. —  Co n d it io n s  po ur  qu’une é c l ip se  ait l ie u  r é e l l e m e n t .

508. L e s  é c l i p s e s  n ’o n t  p a s  l i e u  a  t o u t e s  l e s  o p p o s it io n s . —  

On voit, d’après les calculs qui précèdent, que, si le plan de 
l’orbite de la lune était le plan même de l’écliptique, le centre 
de cet astre passerait, à chaque révolution synodique, par le 
point G del’axeducône; il y aurait, chaque mois, une éclipse 
totale, à l ’époque de la pleine lune. Mais on sait que les deux 
plans sont inclinés l’un sur l’autre de 5° 9' environ : la latitude 
de la lune peut donc être égale à 5° 9', au moment de l'oppo­
sition (I); et, puisque le demi-diamètre du cône ne surpasse 
pas 46’ (n° 307), on comprend que l’astre peut rester, dans 
son mouvement, tout entier en dehors de l’ombre, et n’être 
nullement éclipsé.

509. L i m i t e s  d e  l a  l a t i t u d e  d e  l a  l u n e  p o u r  q u e  l ’é c l i p s e  

s o i t  i m p o s s i b l e  o u  c e r t a i n e . — C’est seulement vers l’époque 
de la pleine lune qu’une éclipse sera possible; mais, pour 
qu’elle ait réellement lieu, il faudra que l’astre ne soit pas trop 
éloigné de l’écliptique; en d’autres termes, il faudra qu’il soit, 
à ce moment, dans le voisinage de l’un de ses nœuds. On peut 
calculer approximativement la limite supérieure que la lati­
tude de la lune ne doit pas dépasser, pour que l’éclipse soit 
possible.

Enelfet, effenons par les centres du soleil et de la terre un 
plan perpendiculaire à l’écliptique (fig. 103). Ce plan coupe le 
soleil suivant le cercle S, la terre suivant le cercle T, le cône

(1) La lune est en opposition, lorsque les centres des trois corps, soleil, 
terre, lune, sont dans un môme plan perpendiculaire à l’écliptique, dans 
l’ordre S, T, L (voir n° 310).
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circonscrit suivant les tangentes ABO, A'B'O : STO est l’inter­
section de l’écliptique par ce plan. La lune décrit autour de la 
terre une courbe, dont le plan coupe celui de la figure suivant

une droite TL. Lorsque, dans son mouvement, elle vient à 
traverser ce plan AOA', l’heure de l’opposition est arrivée, et 
sa latitude est alors l’angle LTO, que son rayon vecteur TL 
forme avec sa projection TO sur l’écliptique. Si le plan de 
l’orbite de la lune était perpendiculaire au plan de la figure, 
cet angle LTO serait le plus petit angle que le rayon vec­
teur TL, mené à son centre, ferait avec l’axe TO du cône. Or, 
cette condition n’est rigoureusement remplie que lorsque la 
ligne des nœuds est perpendiculaire sur ST ; mais, dans toute 
autre position, ces deux plans n’en sont pas moins presque per­
pendiculaires entre eux, et ils font un angle de plus de 84° 51'; 
car, dans l’angle trièdre rectangle formé par ces plans et par 
celui de l’écliptique, l’un des dièdres est droit, l’autre vaut 
5° 9', et l’on sait que la somme des trois angles doit surpasser 
180 degrés. Nous pourrons donc supposer, comme pre­
mière approximation, que la lune traverse perpendiculaire­
ment le plan de la figure : alors l’angle LTO, qui est la lati­
tude de l’astre au moment de l’opposilion, et qui est en même 
temps le plus petit des angles que le rayon vecteur TL fait 
avec l’axe, devra être moindre que la somme des demi-dia­
mètres apparents LTH et HTG de la lune et de l’ombre pure, 
pour que l’éclipse soit possible; cela est évident sur la figure, 
où le disque de la lune est tangent extérieurement au cône. 
Ainsi, en désignant par X la latitude de la lune à ce moment, 
on devra avoir la condition nécessaire et suffisante
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1 < + 6>

ou, en remplaçant 6 par sa valeur (3),

x<5 +  p, +  p“ l ‘ (4)

Nous avons les valeurs maximum et minimum de ê (n° 307) :
$

celles de -  sont 16' 47" et 14'43". En les additionnant, on

trouve que la limite supérieure des latitudes a pour valeurs :

Maximum = 1 °  2'37", 8 
Minimum =  52' 26", 8

On peut donc dire qu’une éclipse est impossible, si la latitude 
de la lune, au moment de l’opposition, surpasse 1° 2' 38", et 
qu’elle est certaine, si cette latitude est inférieure à 52' 26". 
Cependant la limite fournie par la formule (4) est rigoureuse­
ment celle de la distance des centres de la lune et de l’ombre, 
et non celle de la latitude; et, comme on peut le voir dans la 
note xxv, on doit changer un peu les nombres précédents. 
Une éclipse est impossible, si, au moment de l’opposition, la 
latitude de la lune est supérieure à 1° 2' 59". Elle est certaine, 
si cette latitude est inférieure à 52' 38". Si la latitude tombe 
entre ces deux limites, l’éclipse est douteuse.

5 1 0 . M o m e n t  d e  l ’o p p o s it io n  e t  l a t i t d d e  d e  l a  l u n e  a  c e  m o ­

m e n t . — On peut d’ailleurs calculer facilement cette latitude et 
l’instant de l’opposition ; car les tables fournissent les longi­
tudes et les latitudes de la lune, et les longitudes du soleil, 
pour tous les jours de l’année, à midi. Or, au moment de l’op­
position, les longitudes diffèrent de 180 degrés. Ce moment ar­
rive entre deux midis consécutifs. Si le premier jour, on 
trouve que la différence des longitudes n’est que 480° — e, et 
qu'elle est, le second jour, 180° -{- e', on voit que, dans l’inter­
valle, elle a varié de e -j- e' : si la variation correspondante de

i g
ia latitude est S, on pose la proportion -------=  — ; et x  est la

e X
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variation de la latitude depuis le premier midi jusqu’à l’oppo­
sition. Quant.au temps écoulé entre ces deux instants, il est

£ 4 -  Z t
donné par la proportion — — =  — , t étant l’intervalle des

deux midis. Ces calculs sont analogues à ceux que l’on fait 
pour déterminer les équinoxes.

5 1 1. R emarque. — Les considérations qui précèdent ne nous 
font connaître que les cas où l’éclipse est certaine ou impossi­
ble : elles ne nous apprennent rien sur la grandeur de ses 
phases, sur sa durée, son commencement, sa fin, etc. Toutes 
ces circonstances peuvent être déterminées avec précision. 
Nous consacrons la'note xxv, à la fin du volume, à l ’exposi­
tion d’une méthode élémentaire, qui fait dépendre la solution 
complète du problème de la discussion d’une équation du 
deuxième degré. Nous n’indiquerons ici qu’un moyen très- 
simple de calculer la plus grande durée d’une éclipse.

5 1 2 .  Maximum de la curée d’une éclipse totale. — Pour 
trouver le maximum de la durée d’une éclipse totale, on re­
marquera que cette durée est évidemment le temps que la lune 
emploie à traverser le diamètre DD' de l’ombre (fig. 10-4), de­
puis le moment où elle est tangente intérieurement au bord

occidental D, jusqu’à celui où elle devient 
tangente intérieurementau bord oriental 
D'. L’arc que son centre L décrit alors est 
évidemment DD' — 2LD, ou 26 — y ou 
2(P' +  P) — 8 — g (n° 307). Or, la lune 
et l’ombre sont en mouvement dans le 

môme sens, d’occident en orient ; mais la lune va plus vite, et 
c’est l’excès de sa vitesse angulaire sur la vitesse de l’ombre 
(ou de la terre) qui lui fait parcourir le diamètre DD'. D’ail­
leurs, cet excès de vitesse lui fait parcourir 360 dégrés en 
20 ,̂53 ; car c’est après une révolution synodique que la lune 
et l’ombre se trouvent dans la même position : donc il lui fait 
décrire l’arc 2(P' -f- P) —3 — 3' en un temps égal à 

2(P' -f P) — 5 — S29%53 x 360°
Or le maximum de l’arc 2 (P-f-P') — 8 -8 ^ 3 1 2 (6 1 ^ ^ 8 ^ 8 6 )



— 31' 30" — 29' 26", ou 62' 16". En substituant cette valeur 
au numérateur de l’expression précédente, on trouve que 
l’éclipse totale ne peut pas durer plus de deux heures.

515 . M a x i m u m  d e  l a  d u r é e  d ’u n e  é c l i p s e  a v e c  t o u t e s  s e s  

p h a s e s . — Quant à la durée maximum de l’éclipse avec toutes 
ses phases, elle sera égale au temps que la lune met à traverser 
le diamètre DD', mais en le comptant depuis le moment du 
contact extérieur en D, jusqu’à celui du contact extérieur en D. 
L’arc décrit par le point L est, dans ce cas, 2(P' -j- P) — S -f- S',

Q / p ' I p t  ___ §  I g '

et le temps est 29>,53 X ~V ^  J  — — . Or, le maximum
oui)0

de l’arc est 2 (61' 27" +  8", 86) — 31' 30" +  33’ 34", ou 123'16", 
et, par suite, la durée totale de l ’éclipse est au plus de quatre 
heures.

§ IV. —  I n f l u e n c e  d e  l ’a t m o s p h è r e  t e r r e s t r e  s u r  l e s  é c l ip s e s .

5 1 4 .  L ’a t m o s p h è r e  r a c c o u r c i t  l e  c ô n e  d ’o m b r e  q u e  l a  t e r r e  

p r o j e t t e  d e r r i è r e  e l l e . — Nous avons fait abstraction, dans 
les calculs et les considérations qui précèdent, de l’atmo­
sphère qui enveloppe la terre. Or, ce fluide a une influence 
notable sur les éclipses de lune : il raccourcit considérablement 
la longueur du cône d’ombre que notre globe projette derrière 
lui. En effet, sftient S et T (fig. 105) le soleil et la terre; le
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sommet O du cône d’ombre pure était donné par l’intersection 
de la tangente commune avec la ligne des centres ; et tout 
point de l’axe STO, situé entre les points T et O, était dans une 
obscurité complète. Mais, puisqu’il y a une atmosphère, le 
rayon qui, parti du point A, vient raser la terre en B, ne con­
serve pas sa direction rectiligne ; il s’infléchit et va couper
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l’axe en C, plus près du point T. C’est entre T et C que l’ombre 
pure existe. En C, ou un peu au delà sur CO, un observateur 
verrait, par réfraction, le bord extérieur A du soleil ; et, comme 
tout est symétrique autour de ST, l’astre lui paraîtrait enve­
lopper le disque de la terre, comme un anneau lumineux. Un 
autre rayon, parti de A' et rasant la surface en B', s’infléchit 
à son tour, et va couper l’axe en un point plus éloigné C'; de 
sorte que l’observateur, placé en C', verrait un anneau lumi­
neux plus large, puisqu’il recevrait par réfraction tous les 
rayons compris entre A et A'. Enfin, un rayon parti de l'autre 
bord A", rasant la terre en B", va couper l’axe en C"; et l’ob­
servateur placé là verrait le disque entier du soleil, ou plutôt 
un anneau enveloppant notre globe, et dont la largeur serait 
à peu près égale au diamètre apparent de cet astre. Si l’obser­
vateur s’éloignait encore sur TO, il ne recevrait plus de rayons 
lumineux rasant la terre et venant du soleil ; mais il en rece­
vrait des points du ciel situés au-dessous de A" : l’anneau lu­
mineux lui paraîtrait donc s’éloigner du disque de la terre, et 
laisser entre elle et lui un vide qui serait rempli par le bleu 
du ciel. Ce n’est que plus loin encore, un peu au delà du point 
O, qu’il commencerait à voir directement le bord A du soleil.

Pour justifier cette exposition, nous calculons, dans la 
note XXYI, à la fin du volume, la longueur du cône d’ombre 
pure, en tenant compte de la réfraction atmosphérique. Cette 
longueur se réduit à moins de quarante-deux rayons terres­
tres. Nous montrons, en outre, que des rayons, partis du cen­
tre du soleil, vont rencontrer l’axe, derrière la terre, à la dis­
tance de cinquante et un rayons.

515 . Il n’y a pas d’éclipse totale de lune. — Il résulte de 
ces calculs que, la distance moyenne de la lune à la terre 
étant 60 r, cet astre se trouve, lors des éclipses, au delà du 
sommet du cône d’ombre pure, et qu’il reçoit de la lumière, 
non-seulement du bord du soleil, mais même du centre. On 
prouverait aisément qu’un observateur placé dans la lune ver­
rait, par réfraction, au moment d’une éclipse centrale, les trois 
quarts au moins du disque du soleil. Si donc l’air n’affaiblis- 
siat par les rayons réfractés par sa transparence incomplète,
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la lune serait encore, dans ces moments, vivement éclairée. 
Mais une grande partie de ces rayons est éteinte par l’atmo­
sphère ; et, comme les couches humides qu’ils traversent ont 
la propriété d’absorber surtout la nuance complémentaire 
du rouge, la lune se trouve toujours colorée en rouge dans 
les éclipses totales.

Concluons donc qu’il n’y a pas, à proprement parler, 
d’éclipse totale de la lune, puisque l’atmosphère amène sur la 
surface de l’astre une partie des rayons du soleil, lorsqu’elle se 
trouve tout entière dans le cône géométrique circonscrit au 
soleil et à la terre. Cependant on conserve cette qualification 
aux éclipses dans lesquelles la lune n’est éclairée que par ré­
fraction.

51 G. A utue influence de l’atmosphère. — Disons, en outre, 
que les couches inférieures de l’atmosphère sont trop denses 
pour que les rayons lumineux qui les traversent puissent éclai­
rer la lune par réfraction. Ces couches agissent donc comme 
si le rayon terrestre était un peu plus grand qu’il ne l’est; et, 
par suite, elles augmentent le diamètre de la section du cône 
d’ombre, à  la distance de la lune. Mayer a trouvé que,pour 
que le calcul fût d’accord avec les observations, il fallait aug­
menter ce diamètre d’un soixantième de sa valeur.
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C H A P I T R E  YI I

DES é c l ip s e s  de s o l e i l .

Éclipses de soleil. — Elles ont lieu au moment de la conjonction de la lune. 
Pourquoi il n’y en a pas lors de toutes les conjonctions. — Éclipses par­
tielles, annulaires, totales.

§ 1. — C adse  des é c l ip s e s  de s o l e il .

517. E clipse de soleil. —  La lune est un corps opaque; si, 
dans son mouvement de translation autour de la terre, elle
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vient à s’interposer entre le soleil et l’œil de l'observateur, 
elle intercepte une partie ou môme la totalité des rayons qui 
émanent de l’astre : le soleil est éclipsé.

518 . Ombre pure et  pénombre de la lune. — Pour étudier ce 
nouveau phénomène, on peut encore construire le cône d’om­
bre pure que la lune projette derrière elle, en tracantla tan­
gente commune extérieure AEI (fig. 106) aux grands cercles

S etL qui représentent le soleil et la lune, et en faisant tour­
ner cette tengente autour de la ligne des centres SL avec les 
deux cercles. On peut aussi construire le cône de pénombre, 
en traçant la tangente commune intérieure Cl'P et en la fai­
sant tourner à son tour autour de SL.

519. Cause de l' éclipsede soleil. — La lune, dans son mou­
vement, entraîne ces deux cônes avec elle ; lorsqu’elle amène 
le premier dans une position telle que son sommet dépasse ou 
atteint une région quelconque de la surface terrestre, cette ré­
gion ne reçoit plus aucun rayon du soleil, qui se trouve ainsi 
entièrement masqué pour elle; il y a éclipse totale. Si le second 
cône rencontre de môme, dans son mouvement, une partie de 
notre globe, cette partie ne reçoit plus tous les rayons émanés 
de la surface entière du soleil; une portion de ces rayons est 
interceptée par la lune; le disque lunaire paraît échancrer le 
disque solaire d’autant plus profondément que la région ter­
restre est plus près de l’ombre pure ; il y a éclipse partielle.

§ II. — P o s sib il it é  des é c l ip se s  totales de so l e il .

520. Conditions de possibilité. — Pour qu’une éclipse totale 
de soleil ait lieu pour un point de la surface de la terre, il faut



«t il suffit que le cône d’ombre pure de la lune soit assez long 
pour atteindre ce point. Calculons-en la longueur.

5 2 1 .  L ongueur du cône d' ombre lunaire ; son sommet peut at- 
teindre la terre . — En raisonnant comme au n° 305, on voit 
facilement, qu’en appelant d" la distance du soleil à la lune, 
et R et r' les rayons des deux astres, la longueur x  du cône 
d’ombre pure est donnée par la formule

'  =  (I)

Or, R =  108,556 r, r' — 0,273 r : donc
r> 0,273 273--------= ______ i_______  — ---------=  o 00^39

R — r' 108,556 — 0,273 108283

Quant à la distance d", elle varie avec la position de la lune. 
Comme l'éclipse de soleil ne peut avoir lieu que vers la con­
jonction (1), choisissons la position la plus favorable, celle où 
la lune se trouverait surla ligne droite qui joint les centres du 
soleil et de la terre; alors cT = d  — d!, en appelant toujours d 
et cfles distances du soleil et de la lune à la terre. Par consé­
quent, d" sera maximum, lorsque le soleil sera apogée et la 
lune périgée; d" sera minimum, lorsqu’au contraire le soleil 
sera périgée et la lune apogée. Or on connaît ces diverses dis­
tances ; on aura donc :

Maximum de d" =  23670 r — 57 r — 23613 r ,
Minimum de d" — 22890 r — 63,6 r — 22826, 4 r.

Par suite, les longueurs correspondantes du cône d’ombre, 
seront :

Maximum d\r =  23613 r X  0,00252 =  59,53”. 
Minimum d’at =  22826,4 r X  0,00252 =  57,52 r.

Or, on vient de rappeler que les distances d'de la lune au cen­
tre de la terre sont :

(I) La lune est en c o n jo n c tio n , lorsque les centres des trois corps, soleil, 
lune, terre, sont dans un même plan perpendiculaire à l’écliptique, dans l’or­
dre S, L, T (voir n° 339).

CHAPITRE VII. —  DES ÉCLIPSES DE SOLEIL. 22 9



230 LIVRE IV. LA LUNE.

Maximum de d  =  63, 6 r,
Minimum de d  =  37 r.

Donc les distances du centre de la lune au point le plus voisin 
de la surface terrestre sont seulement :

, Maximum =  62, 6 r,
Minimum =  36 r.

*
On conclut de lacomparaison de cesnombres, que, si la lune 

est à l’apogée, le sommet du cône d’ombre ne peut pas attein­
dre la terre ; mais, si elle est au périgée, 
la longueur du cône est assez grande pour 
que ce cône rencontre les points de la sur­
face du globe les plus voisins de notre sa­
tellite. Dans le premier cas, l’éclipse totale 
ne peut avoir lieu pour aucun point de la 
surface de la terre. Pour ceux de ces points 

qui sont situés sur l’axe du cône, le diamètre apparent du 
soleil est plus grand que celui de la lune : l’éclipse est annu­
laire : on voit le bord du soleil dépasser de tous côtés, comme 
un anneau, le disque de la lune (fig. t07).

Dans le deuxième cas, l’éclipse est totale pour les points qui 
sont situés dans le cône d’ombre ; et, pour eux, le diamètre 
apparent de la lune est plus grand que celui du soleil. Mais ce 
cône est fort étroit, et il n’embrasse jamais à la fois plus de la 
dix-millième partie de la surface de la terre (Y. note xxyii).

§  III. — Co n d it io n s  pour, qu ' une é c l ip se  ait  lieu  r é e l l e m e n t .

3 2 2 .  L es éclipses n ’ont pas lieu  a toutes les conjonctions. 
.— Les considérations qui précèdent nous montrent que, si le 
plan de l’orbite de la lune étaitcelui de l’écliptique, il y aurait 
une éclipse de soleil à chaque conjonction, comme il y aurait 
une éclipse de lune à chaque opposition. On voit, en effet, en 
considérant de nouveau (üg. 108] le cône AOA' circonscrit à la 
terre et au soleil, que la lune, décrivant son orbite LL' dans le 
plan delà figure qui est celui de l’écliptique, pénètre en L 
dans le cône lumineux, et cache alors à la région B de la terre



une partie du disque du soleil; à mesure qu’elle s’avance vers 
H, son ombre et sa pénombre se déplacent de B vers E ; et, si 
la première n’atteint pas la terre, la deuxième l’atteint néces­
sairement, et produit, pour les points qui y pénètrent succes­
sivement, une éclipse partielle. Lorsque la lune est en H, la ré­
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gion E a, suivant les distances, une éclipse annulaire ou une 
éclipse totale. Puis l’astre, continuant son mouvement,sort 
du cône en L', après avoir produit, dans la région terrestre 
EB', des phénomènes analogues à ceux que nous venons 
d’exposer pour la région EB.

523. L imite de la latitude de la lune, lors de la conjonc­
tion , pour que l’éclipse ait lieu . — Tel serait, à l’époque 
d’une conjonction, l’aspect que nous offrirait le soleil. Mais 
l’orbite de la lune est inclinée de 5° 9' sur le plan de l’éclip­
tique ; par suite, cet astre peut passer en dehors du cône lu­
mineux, et ne produire aucune éclipse, ni totale ni partielle. 
11 faut, pour que l’éclipse ait lieu réellement, que la latitude 
de la lune n’ait pas, au moment de la conjonction, une valeur 
trop grande, c’est-à-dire que l’astre soit dans le voisinage d’un 
de ses nœuds. On peut calculer, d’une manière analogue à 
celle qu’on a employée au n° 309, la limite que ne doit pas dé­
passer cette latitude. Car, en conservant la fig. 103 (p. 222) et 
les développements qui ont été donnés, l’angle L'TS sera la la­
titude, au moment delà conjonction. Si cet angle est la somme 
des demi-diamètres apparents de la lune et du cône à la dis­
tance d, l’astre rasant le cône sans y pénétrer, l’éclipse sera 
insensible : il faut donc que la latitude soit pluspetiteque cette

g
somme. Or, le premier angle est -  ; quant au second, on a :
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H'TG' =  BOT +  BH'T =  a + P ' = ^  — P +  P': donc, en dési­

gnant par X la latitude de la lune, lors de la conjonction, il 
faut, pour qu’une éclipse de soleil soit possible, que l’on ait :

x < i  + i  + p,“ p- (2)

Si l’on calcule cette limite, d’abord en prenant les valeurs 
maximum de S, 8' et P', puis, en prenant leurs valeurs mini­
mum, on trouve 1“ 34' 24"dans le premier cas, et 1° 24' 12" dans 
le second. Donc il n’y aura pas d’éclipse de soleil, si l’on a 
X >  1° 34' 24"; et il y en aura certainement une, si l’on a 
X <  1° 24' 12". Cependant les limites que fournit la formule (2) 
sont celles de la distance des centres de la lune et de la section 
du cône lumineux, et non celles de la latitude ; et (V. note xxvn) 
il faut changer un peu les nombres précédents. Une éclipse est 
impossible, si l’on a X >  1° 34' 5G"; elle est certaine, si l’on a 
X <  1° 24' 31". Si la latitude tombe entre ces deux limites, l’é­
clipse est incertaine.

On calcule d’ailleurs cette latitude comme au n° 310.
524. R emarque. —  La méthode pour calculer les circon­

stances générales d’une éclipse de soleil est identique à celle 
que l’on suit pour les éclipses de lune. Nous consacrons la 
note xxvn à cette importante question.

Nous dirons seulement ici que l’on peut calculer la durée 
maximum d’une éclipse de soleil, comme on a calculé celle 
d’une éclipse de lune (n° 3.13), en déterminant le temps qui 
s’écoule entre les deux contacts extérieurs de la lune et du 
cône lumineux dans les circonstances les plus favorables. Elle 
ne peut être de plus de six heures.

525. E ffets physiques de l’éclipse totale. —  Une éclipse 
totale ne dure jamais plus de cinq minutes. Rien n’est plus 
curieux à examiner qu’un pareil phénomène. L’observateur 
voit d’abord le bord occidental du soleil échancré par la lune; 
puis la partie lumineuse diminue progressivement, le jour 
baisse, les objets prennent une teinte blafarde. Au moment où 
le soleil disparaît complètement, la nuit remplace immédiate­



ment le jour; les étoiles brillent au firmament; les planètes 
sont visibles: la rosée annonce le refroidissement subit de la 
terre ; les animaux, l’homme lui-même, éprouvent une sen­
sation d’effroi. Il se forme, autour du disque de la lune, une 
couronne de lumière pâle, dont la cause n'est pas connue. 
Enfin, un rayon solaire s’échappe à l’occident de la lune, et 
le jourrcparatt subitement. Bientôt le disque du soleil se dé­
gage de l’ombre lunaire, et la lumière qu’il nous envoie re­
prend tout son éclat (1).

526. Dates des éclipses totales de soleil en E urope. — On 
compte, depuis le commencement de l’ère chrétienne, un 
certain nombre d’éclipses totales de soleil, visibles enEurope. 
En voici les dates :

Ans 14, 59, 98, 100, 113, 192, 237, 334, 360, 655, 757, 787, 
810, 878, 957, 1133, 1187, 1191, 1197,1239,1241, 1307, 1333, 
1386, 1415, 1485, 1506, 1530, 1544, 1560, 24 décembre 1601, 
23 septembre 1699, 12 mai 1706, 3 mai 1715, 22 mai 1724, 
21 juin 1778. Dans notre siècle, il y a eu une éelipse totale 
de soleil, visible dans le midi de la France, dans la matinée 
du 8 juillet 1842 ; il y en a eu une autre, visible dans le nord 
de l’Allemagne, le 28 juillet 1851 ; celle du 15 mars 1858 a été 
totale en Angleterre, et celle du 28 juillet 1860 l’a été pour le 
nord de l’Espagne.

§ IV. — Quelques remarques sur les éclipses.

527. R etour des éclipses. — Nous ne terminerons pas l’é­
tude que nous venons de faire des éclipses, sans indiquer le 
moyen dont on s’est longtemps servi pour en prédire leretour. 
Quoique ce moyen soit aujourd’hui sans usage, parce que la 
connaissance des lois qui régissent les mouvements célestes 
permet de construire les tablés astronomiques avec une pré­
cision inconnue dans les temps anciens, cependant il est inté­
ressant de savoir comment les astronomes s’y prenaient pour 
annoncer les éclipses à l’avance.

(1) Consulter la notice de M. Arago, Annuaire de 1842.
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Leur procédé consistait simplement à observer une longue 
suite d’éclipses, et à noter avec soin toutes les circonstances 
de leur apparition, leurs dates, leurs grandeurs, leurs durées. 
En étudiant attentivement ce catalogue, ils reconnurent bien­
tôt qu’il exislaitcertains intervalles de temps, au bout desquels 
les éclipses se reproduisaient à très-peu près les mêmes, et 
dans le même ordre. Ainsi , les Chaldéens avaient découvert 
une période de 18 ans 11 jours, à laquelle ils avaient donné 
le nom de Saros; cette période comprenait soixante et dix 
éclipses de lune et de soleil, inégalement réparties dans l’in­
tervalle ; et chaque période de 18 ans 11 jours ramenait ces 
éclipses aux mêmes époques, et sensiblement avec les mêmes 
circonstances. Ils se servaient des observations faites dans une 
période pour prédire les éclipses de la période suivante; puis, 
corrigeant leurs prévisions par des observations nouvelles, au 
fur et à mesure qu’elles se réalisaient, ils obtenaient ainsi les 
éléments qui devaient leur permettre d’annoncer de nouveaux 
retours.

Ces procédés, nous l’avons dit, ne sont plus en usage aujour­
d’hui.

Nous exposons, dans la note xxvm, à la fin du volume, la 
cause à lequelle on doit attribuer ces retours périodiques, en 
donnant quelques détails sur le phénomène de la rétrograda­
tion des nœuds de la lune.

3 2 8 .  Différence entre les éclipses de lune et celles de 
soleil.— Si l’on compare les éclipses de lune etcellesdesoleil, 
on reconnaît entre elles des différences essentielles. En effet, 
une éclipse de lune est visible, en même temps, et avec la 
même phase, de tous les points du globe pour lesquels l’astre 
est au-dessus de l’horizon. Le mouvement de rotation de la 
terre sur elle-même est étranger au phénomène. Au contraire, 
une éclipse de soleil n’est visible que successivement par les 
différents observateurs. Elle peut être, au même instant, totale 
pour quelques-uns, partielle pour d’autres; elle peut ne pas 
exister pour d’autres encore, bien que, pour tous, le soleil soit 
au-dessus de l’horizon. La grandeur et la durée de ses phases 
dépendent à la fois, pour un lieu donné, du mouvement de ro­
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tation de la terre et du mouvement de translation de la lune 
autour d’elle.

329. Il y a, pour toute la ter re , plus d’éclipses de soleil 
que d’éclipses de lune. — Si l’on se reporte à la fig. 103 (p. 222) 
etaux explications que nous avons données des conditions qui 
rendent une éclipse possible, on voit aisément que les éclipses 
de soleil doivent être plus fréquentes que les éclipses de lune : 
car la lune entrera plus facilement en L'dans le cône lumi­
neux compris entre la terre et le soleil, qu’elle n'entrera en L 
dans le cône d’ombre plus étroit que la terre projette derrière 
elle. C’est, en effet, ce qui arrive : car, dans la période de 
18 ans 11 jours, on voit environ 70 éclipses, dont 41 de soleil 
et 29 de lune.

5 5 0 .  I l y a , pour un lieu déterm iné, plus d’éclipses de lune 
que d’éclipses de soleil. — Cependant, pour un lieu déter­
miné de la terre, il y a à peu près trois fois plus d’éclipses de 
lune que d’éclipses de soleil. La raison de cette différence est 
facile à saisir : c’est que (n° 328) les éclipses de lune sont visi­
bles à la fois de tous les points de l’hémisphère qui ont la lune 
sur l’horizon, tandis que les éclipses de soleil ne sont visibles 
que successivement, et seulement pour une partie de l’hémi­
sphère qui fait face à cet astre.

5 5 1 .  Nombre d’éclipses par an. —  11 y a au plus, dans une 
année, sept éclipses ; il y en a au moins deux ; en moyenne, il 
y en a quatre; mais elles ne sont pas toujours visibles en un 
lieu déterminé : car les deux astres peuvent être sous l’horizon 
du lieu pendant la durée de l’éclipse. De plus, lors d’une 
éclipse de soleil, le lieu peut être en dehors de la zone assez 
étroite que parcourt la pénombre lunaire.

Il n’y a guère, pour un lieu donné, qu’une éclipse de soleil 
en deux ans, qu’une éclipse totale en deux siècles. Mais, pour 
toute la terre, elles sont beaucoup plus fréquentes : ainsi il 
y a douze éclipses totales dans le xix' siècle.

5 5 2 .  E ffroi produit par les éclipses. — Les éclipses ont 
été l’objet de la frayeur des hommes dans les temps d’igno­
rance. Alexandre, près d’Arbèle, fut obligé d’user de toute 
son adresse pour calmer l'effroi qu’une éclipse avait jeté parmi
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ses troupes. Sulpicius Gallus apaisa une sédition dans son 
armée, dans la guerre de Paul-Émile contre Persée, en prédi­
sant une éclipse de lune. Christophe Colomb, près de périr de 
faim dans les.contrées sauvages qu’il avait découvertes, 
annonça aux Indiens qu’il allait les priver de la lumière de la 
lune ; et ceux-ci, effrayés en voyant la menace se réaliser, 
vinrent lui apporter leurs tributs ordinaires, et le supplier 
■de rendre à cet astre son éclat accoutumé.

Le progrès des sciences a fait voir combien ces frayeurs ont 
peu de fondement, depuis que l’on a compris qu’on pouvait 
calculer les tables astronomiques, et prédire longtemps à l’a­
vance les diverses circonstances de ces phénomènes célestes.

EXERC'CES ET APPLICATIONS.

335. — 1° Connaissant la distance angulaire de la lune au soleil, A un 
instant donné, construire et calculer la partie du diamètre de la lune, per­
pendiculaire à la ligne des cornes, qui mesure la largeur de la partie éclairée 
et visible ;

2° Calculer la relation qui existe entre la révolution sidérale T de la terre 
autour du soleil, et les révolutions sidérale et synodique t et a de la lune. On

trouve y  =  1 4- y  ;

3° Dans le triangle STL (fig. 109) formé par les centres du soleil, de la

T ig . 109.

terre et de la lune, pendant une éclipse de soleil, calculer la relation qui 
existe entre les angles T et L, connaissant les parallaxes P et P' du soleil et 
de la lune.
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LEUR MOUVEMENT AUTOUR DU SOLEIL.

CHAPITRE PREMIER

MOUVEMENT DES PLANÈTES AUTOUR DU SOLEIL ET SUR ELLES- 
MÊMES; LOIS DE KÉPLER; PRINCIPE DE NEAVTON.

Noms des planètes principales. — Leurs distances moyennes. — Leurs mou­
vements autour du soleil s’effectuent suivant les lois de Kepler. — Énoncé 
du principe de la gravitation universelle.

§ I. — Mouvement des planètes autour du soleil et sur elles-mêmes.

534. Noms des planètes principales. — Le soleil et la lune 
ne sont pas les seuls corps célestes qui paraissent se déplacer 
parmi les étoiles. Lorsqu’on étudie avec soin la voûte du ciel, 
on ne tarde pas à s’apercevoir qu’il y a un petit nombre d’as­
tres, les uns brillants et visibles à l’œil nu, les autres télesco­
piques, qui ont aussi un mouvement propre. Parmi ces astres, 
il faut citer en première ligne les planètes, dontlesprincipales 
ont reçu les noms de Mercure, Vénus, Mars, Jupiter, Saturne, 
Uranus et Neptune.

Les planètes se distinguent des étoiles à plusieurs égards. 
D’abord elles sont, en général, dépourvues de scintillation; 
leur éclat est plus mat. De plus, observées avec de forts gros­
sissements, elles présentent des diamètres apparents sensibles, 
tandis que les étoiles paraissent toujours réduites à de simples



points lumineux. Enfin, et surtout, elles changent de position 
d’une manière fort remarquable.

3 5 3 .  Mouvement apparent d’une planète, vu de la terre . —  
Rien n’est plus facile que de constater l’existence du mouve­
ment propre d’une planète. Il suffit de mesurer chaque jour 
son ascension droite et sa déclinaison, et de vérifier la varia­
tion perpétuelle de ces coordonnées. Mais si l’on veut tracer 
sur une sphère de carton le lieu des positions successives d’une 
même planète, comme nous l’avons indiqué, dans les livres 
précédents, pour le soleil et pour la lune, on trouve, non plus 
un grand cercle de la sphère, mais bien une courbe fort com­
pliquée, composée de zigzags qui ne paraissent suivre aucune 
loi. Ainsi, quelques-uns de ces astres, tels que Mercure et 
Vénus, ne semblent jamais s’écarter beaucoup du soleil; on 
les voit, à certaines époques, le soir, à l ’occident, marcher 
lentement vers l’orient, puis se rapprocher progressivement 
du soleil : ils disparaissent alors pendant quelque temps, puis 
on les voit reparaître le matin, à l’orient, s’éloignant du soleil 
vers l’occident, et revenant ensuite en sens contraire, pour dis­
paraître de nouveau. D’autres, tels que Mars, Jupiter, Saturne, 
semblent, à la vérité, tourner autour de nous, mais d’un mou­
vement fort irrégulier; car on les voit se diriger tantôt vers 
l’orient, tantôt vers l’occident; et, par intervalles, ils parais­
sent stationnaires.

33G. Mouvement d’une planète, vu du soleil. — Ces appa­
rences singulières, que présentent à nos yeux les planètes, 
sont dues à ce que la terre n’est pas au centre de leurs mou­
vements. Si l’observateur pouvait se placer dans le soleil, il 
verrait tourner toutes les planètes autour de lui, d’occident en 
orient, dans des orbites à peu près circulaires, dans des plans 
peu inclinés à celui de l’écliptique, avec des vitesses à peu près 
constantes. Tous ces mouvements lui paraîtraient aussi sim­
ples, aussi faciles à concevoir que l’est pour nous celui de la 
une. Mais, placé sur la terre, il voit ces astres tourner autour 

d’un centre qui n’est pas le lieu d’observation; et cette 
position excentrique suffit pour expliquer toutes les appa­
rences.
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557. Remarque.— Il importerait de justifier immédiatement 
l ’assertion qui précède, et de démontrer que le mouvement 
des planètes s’exécute autour du soleil. Mais les ressources de 
l’analyse sont indispensables pour établir des vérités de cette 
nature. Nous renvoyons donc le lecteur, pour ces calculs, à 
la note xxix, placée à la fin du volume; et nous nous bor­
nons à énoncer ici le résultat auquel on parvient.

Chaque planète décrit autour du soleil, d'occident en orient, 
une courbe plane, dont le plan est, en général, très-peu incliné 
à l'écliptique. La ligne des nœuds (intersection du plan de 
l’orbite avec celui de l’écliptique) a un mouvement rétrograde.

558. R otation des planètes sur elles- mêmes. — En exa­
minant avec soin les taches que l’on peut apercevoir sur 
chaque planète, on a essayé de prouver qu’elle tourne sur 
elle-même. On est parvenu à le démontrer pour Mercure, 
Vénus, Mars, Jupiter, Saturne ; et l’on a calculé les éléments 
de ce mouvement et la durée de la rotation, de la même ma­
nière que nous l’avons fait pour le soleil (note xv ii). Donc :

Chaque planète tourne sur elle-même, d’occident en orient, 
autour d’un axe qui est, en général, incliné à son orbite.

§ II. —  R évolutions synodiqce et sidérale des planètes.

559. Conjonction. — On dit qu’un astre est en conjonction 
avec le soleil, lorsque le plan de son cercle de latitude passe 
par le soleil. Les deux astres ont alors la même longitude ; et, 
si les plans de leurs orbites étaient confondus, ils seraient en 
ligne droite avec la terre, dans l’ordre T, A, S, ou dans l’ordre 
T, S, A. Il peut y avoir deux sortes de conjonction, suivant 
que l’astre considéré est, à ce moment, plus près ou plus loin 
de la terre que le soleil. Dans le premier cas, l’ordre de posi­
tion des trois corps est T, A, S ; il y a conjonction inférieure. 
Dans le second, où l’ordre de position est T, S, A, il y a con­
jonction supérieure. Ces dénominations sont empruntées aux 
notions que nous nous faisons du haut et du bas sur la terre. 
Pour nous, un objet extérieur est plus haut qu’un autre, lors­
qu’il est plus éloigné de la surface du globe; il est plus bas
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dans le cas contraire. Si donc un astre est plus près de nous 
que le soleil, il est dans une position relativement inférieure ; 
s’il est plus éloigné, au contraire, il est supérieur au soleil. 
On a proposé de remplacer les dénominations de conjonctions 
inférieure et supérieure par celles de conjonctions intérieure et 
extérieure, qui caractériseraient les distances de l’astre à la 
terre, comparées à celles du soleil, indépendamment de toute 
notion trop restreinte.

D’après cela, soit (fig. 110) T  S ^  l’orbite apparentedu soleil 
autour de la terre ; et soit S la position de cet astre, à un mo­

ment donné. Un corps cé­
leste, en conjonction avec 
lui, se projette sur l’éclip­
tique, sur le rayon vecteur 
TS, soit en a, soit en a'. 
Dans le premier cas, la con­
jonction est inférieure ou 
intérieure ; dans le second, 
elle est supérieure ou exté­
rieure. Il est évident que la 
lune, qui circule autour de 

la terre à une distance 400 fois plus petite que celle qui 
nous'sépare du soleil, ne peut jamais être en conjonction su­
périeure.

340. Opposition. — On dit qu’un astre est en opposition, 
lorsque le plan de son cercle de latitude prolongé va passer 
par le soleil. Alors les longitudes des deux astres diffèrent de 
180 degrés : si les plans des deux orbites étaient confondus, 
ces astres seraient encore en ligne droite avec la terre, mais 
celle-ci serait entre eux : de sorte que les trois corps se trou­
veraient dans l’ordre S, T, A. D’après cela, si le soleil est en S 
(fig. HO), au moment de l’opposition, la projection de l’astre 
sur le plan de l’écliptique est en b, sur le prolongement de la 
droite ST.

Ainsi, lors de l’opposition, la terre est toujours entre l’astre 
et le soleil ; tandis qu’à l’époque de la conjonction, elle les 
voit tous deux du même côté.
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5 4 1 . Quadrature. — On dit encore qu’un astre est en qua­
drature, quand le plan de son cercle de latitude est perpen­
diculaire sur celuiqui passe par le soleil ; alors leurs traces sur 
le plan de l’écliptique sont perpendiculaires entre elles, et les 
longitudes des deux astres dilfèrent de 90 degrés ou de 270 de­
grés. Par conséquent, si le soleil est en S, l’astre se projette en 
■e ou en d, sur une droite cd perpendiculaire à la droite ST.

Nous avons dû donner ces définitions générales, qui n’a­
vaient pas encore trouvé place dans ces leçons, et qui nous 
sont nécessaires pour ce qui va suivre.

5 4 2 .  R évolution synodique d’une pla nète . — On appelle 
révolution synodique d’une planète l’intervalle de temps com­
pris entre deux oppositions ou deux conjonctions consécutives 
de cet astre. Pour l’évaluer,'on observe deux oppositions ou 
deux conjonctions séparées par un grand nombre de révolu­
tions, et l’on divise par leur nombre la durée qu'elles com­
prennent. Les erreurs que l’on peut commettre sur l’apprécia­
tion de l’époque de chaque phénomène se trouvent ainsi 
grandement atténuées par la division; et l’on peut obtenir la 
révolution synodique de chaque planète avec une approxima­
tion presque indéfinie.

5 4 5 . R évolution sidérale d’une planète. — Il serait fort 
difficile de mesurer directement la révolution sidérale d’une 
planète, c’est-à-dire le temps pendant lequel elle exécute sa 
révolution complète autour du soleil. Car, n’étant pas placés 
au centre de son mouvement, nous ne pouvons reconnaître 
aisément le moment où elle revient au même point de son 
orbite. Mais la mesure de la révolution synodique nous permet 
d’en déduire celle de la révolution sidérale. En effet, dési­
gnons par T =  365^,2563744 la révolution sidérale de la terre, 
et par x  celle de la planète : soit, en outre, s la révolution syno­
dique de celle-ci. Nous devons distinguer deux cas, suivant 
que la planète est plus près ou plus loin du soleil que la terre.

Dans le premier cas, soient (fig. 1H) : S le soleil, T'iv et PP 
les orbites de la terre et de la planète, que nous supposerons 
circulaires et situées dans le même plan, hypothèses qui n’au­
ront pas d’influence sensible sur le résultat. Soient T et P les 

cosai. g. 10
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positions des deux astres, au moment d’une conjonction. Le 
mouvement angulaire de la planète étant plus rapide que celui 
de la terre, parce qu’elle est plus près du soleil, ainsi que.le 
démontrera la troisième loi de Képler (n° 346), on comprend 
qu’elle exécute sa révolution sidérale en un temps plus court

que la terre. Lorsqu’elle revient au 
point P, la terre n’est plus en T; 
elle s’est avancée sur son orbite 
dans le même sens; et, après un 
certain temps, la planète se re­
trouve en conjonction en P'. Alors 
elle' a décrit 360° -f- l’angle PSP' 
tandis que la terre n’a décrit que 
l ’angle TST'= PSP'. Plus générale­
ment, la planète a parcouru 3C0° de 
plus que la terre, et la durée de ce 

mouvement est la révolution synodique s. Or, supposons les 
mouvements uniformes; la terre parcourant 360° dans le

360°temps T, parcourt en un jour =  Y ; et, dans le temps s,

elle décrit Vs. Donc la planète décrit, dans le môme temps s, 
360° -j- Vs; et, pour décrire 300° seulement, elle emploie un 
temps x  donné par la formule
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i - « X
360°

Vs - f  360°
sT

ou x= 7 + t- C)

Dans le second cas, les deux as­
tres sont disposés comme dans la 
fig. 112. Au moment de l’opposi­
tion, ils sont, l’un en T, l’autre en 
P : c’est alors la terre T, qui, dans 
l’intervalle d’une révolution syno- 
dique s, décrit 360° de plus que la 
planète. Et, comme son mouvement 
angulaire est représenté par Vs, ce- 

I ig‘ 112- lui de la planète est seulement Vs
360°. Or, si, dans le temps s, la planète décrit Vs — 360°,



elle emploiera, pour décrire 360°, un temps x  donné par la 
formule

w  360° sT
ï  =  s x  —-----------, ou x  = ------- . (-i)Ns — 3ti0° s — T ' '

Telles sont les deux formules qui donnent, dans chaque cas, 
la révolution sidérale de la planète. C’est par ce procédé, 
notons-le en passant, que les anciens astronomes ont déter­
miné les révolutions sidérales des cinq planètes visibles à 
l’œil nu.

§ II!. —  D istances des planètes au soleil.

5 4 4 .  Rapport des distances de la terre et d’une planète au 
soleil. — Soient (flg. 113) : S le soleil, TT' et PP' les orbites 
de la terre et d’une planète supérieure (le calcul serait analo­
gue pour une planète inférieure); supposons encore que ces 
orbites soient circulai­
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res et situées dans le 
môme plan.

On observe la pla­
nète, d’abord au mo­
ment de l’opposition, en 
P, puis à une époque 
rapprochée, lorsqu’elle 
est en P' : soient, à ces 
deux instants, T et T'les 
positions correspondan­
tes de la terre. Menons 
STP, ST', SP'et PT. Les 
angles TST, PSP', me­
surent les mouvements angulaires de la terre et de la pla­
nète, pendant le temps t qui sépare les deux observations. 
Or ces deux mouvements sont connus : car, si l’on désigne 
par T et T'les durées des révolutions sidérales des deux

. 300° 360°astres, —̂  ei _ _ sonl jeurs mouvements diurnes moyens, et,
• 360°

par suite, on a : angle TST'= x  t, et angle P S F =  - ^ - X  t.
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On peut donc obtenir la valeur de l ’angle P'ST', qui est la dif­
férence des angles TST, P3P\ D’un autre côté, l’angle STP' 
est la distance angulaire du soleil à la planète, vue de la terre : 
c’est donc la différence de leurs longitudes géocentriques, me­
surables toutes deux par les méthodes connues. On connaît 
donc les deux angles en S et en T', dans le triangle ST'P' ; on 
connaît par suite l’angle P'. On pourrait donc construire un 
triangle semblable au triangle SPT, et en conclure le rap- 

SP'port— ,. Mais il est bien préférable d’employer la trigonomé-û 1
trie, et de calculer ce rapport par la formule élémentaire 

SP' sin T'
ST' =  sin P'"

Ou obtient ainsi le rapport des distances de la planète et de la 
terre au soleil, à l’époque de l’opposition.

545. Mesure directe de la distance périgée de mars, e t , par 
SUITE, DES DISTANCES DE LA TERRE ET D’UNE PLANÈTE AU SOLEIL.

SP— La méthode précédente ne fournit que le rapport — desb 1
distances de la planète et de la terre au soleil; par consé­
quent, pour calculer la première, il est nécessaire de connaî­
tre la seeonde. Nous avons montré, dans la théorie de soleil 
(n° 176), comment on peut déduire cette distance de la pa­
rallaxe solaire calculée préalablement. Mais cette méthode, à

cause de la peti­
tesse de la paral­
laxe, ne comporte 
pas une exacti­
tude suffisante.

On a donc ré­
cours à une autre 
méthode qu’ont 
employée de con­

cert, dans le siècle dernier, Lacaille, au cap de Bonne-Es­
pérance, et Lalande à Berlin. Ils ont choisi à cet effet la pla­
nète Mars,l’une de celles qui, dans leur mouvement, s’appro-
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chent le plus de la terre; et, saisissant le moment où elle était 
à son périgée, ils ont mesuré directement sa distance au centre 
de notre globe. Observant, pour cela, simultanément, son 
passage en M (fig. 114) au méridien commun des deux lieux 
B et C, ils ont mesuré à cet instant ses distances zénithales ap­
parentes MBZ et MCZ'. Connaissant ainsi leurs suppléments 
MBT et MGT, sachant d’ailleurs que l’angle BTC était la 
somme des latitudes BTE, CTE, des deux lieux, ils avaient 
toutes les données nécessaires pour déterminer le quadrilatère 
BTCM, et, par suite, sa diagonale TM, qui est la distance 
cherchée ; car ils en connaissaient deux côtés TB, TC, et tous 
les angles.

C’est encore la trigonométrie qu’il faut employer dans ce cas. Les triangles 
BT.YI, CTM, donnent

, , ,  TM sinz  TM sin z’ ,, sinz sin z' .
r sm p r sut p sm p stn p

Or, on voit aisément que p p ' =  z z' — X — X'; ces deux relations four­
nissent donc les valeurs de p et d e p ';  puis la première des formules (4|
, i fn zdonne TM =  r ——  .sinp

La distance périgée de Mars étant une fois connue, nos ob­
servateurs trouvèrent, dans les tables astronomiques calcu-

TMlées à l’avance, la valeur du rapport —  pour la même époque.

Divisant TM par ce rapport, ils obtinrent pour quotient la dis­
tance ST de la terre au soleil.

Enfin la mesure de ST, étant substituée dans la formule (3) 
calculée à l’avance dans les tables, leur fournit la distance SP 
d’une planète quelconque au soleil. C’est ainsi que l’on a pu 
déterminer les dimensions véritables du système solaire.

On comprend, d’ailleurs, que la valeur de ST, une fois con­
nue, a pu leur servir à déterminer la parallaxe du soleil, à

l’aide de la formule P =  206263 ~ (n° 176).
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§ IV. — Lois de Kepler.

54G. Énoncé des trois lois de Képler. — Toutes les planètes 
sont soumises, dans leurs mouvements, à trois lois générales 
qui ont été découvertes par Képler, et dont voici l’énoncé :

l re Loi. Chaque planète se meut autour du soleil dans une orbite 
plane ; et le rayon vecteur, mené du centre de la planète à celui du 
soleil, décrit des aires égales en temps égaux.

2' Loi. La courbe décrite par chaque planète est une ellipse dont 
le centre du soleil occupe l'un des foyers.

3e Loi. Les carrés des temps des révolutions sidérales des diverses 
planètes sont entre eux comme les cubes de leurs moyennes distances 
au soleil.

547. Démonstration de ces lois. — C’est en étudiant spé­
cialement le mouvement de Mars, dont l’excentricité est plus 
forte que celle des autres planètes; c’est en comparant des ob­
servations, en nombre considérable, faites sur cet astre par 
Tycho-Brahé et par lui-même; c’est en calculant, par la mé­
thode indiquée (note xxix), les distances variables de la pla­
nète au soleil, en divers points de son orbite, et en mesurant 
ses vitesses angulaires correspondantes par la différence de ses 
longitudes héliocentriqües, que Képler est parvenu à démon­
trer les deux premières lois, lesquelles ont été ensuite éten­
dues aux autres planètes et à la terre elle-même. C’est en com­
parant les distances moyennes des diverses planètes au soleil, 
mesurées, comme nous venons de le dire, avec les durées de 
leurs révolutions sidérales, qu’il est parvenu à la troisième loi. 
Cette admirable découverte a coûté dix-sept ans de travaux 
incessants à son auteur : c’est bien peu encore, si l’on songe à 
la grandeur du résultat et aux difficultés de toute nature qu’il 
devait rencontrer dans des mesures aussi délicates. Long­
temps il a cru que les orbites des planètes étaient circulaires : 
il y avait, entre ces orbites et des cercles, une différence si 
faible, qu’il a fallu toute sa sagacité et toute la précision de ses 
observations pour la découvrir. Il voulait que les durées des 
révolutions fussent proportionnelles aux distances au soleil :



cette loi si simple lui paraissait être la loi du mouvement de 
tous ces corps : obligé delà rejeter, parce qu’elle ne satisfaisait 
qu’imparfaitement aux observations, ce ne fut pas sans de fas­
tidieux calculs, et sans des efforts considérables, qu’il parvint 
à lui substituer la proportionnalité entre les carrés des temps 
et les cubes des grands axes.

Aussi, écoutez-le, annonçant au monde sa découverte : 
« Après avoir trouvé, dit-il, les vraies dimensions des orbites 
<( par les observations de Brahé et par l’effort continu d’un 
« long travail, enfin j’ai découvert la proportion des temps
<i périodiques à l’étendue de ces orbites......Et si vous voulez
« en savoir la date précise, c’est le 8 de mars de cette année 
« 1618 que, d’abord conçue dans mon esprit, puis maladroi- 
« tement essayée par des calculs, partant rejetée comme fausse, 
« puis reproduite le 15 de mai avec une nouvelle énergie, elle 
« a surmonté les ténèbres de mon intelligence ; mais si plei- 
« nement confirmée par mon travail de dix-sept ans sur les 
« observations de Brahé, et par mes propres méditations par- 
« faitement concordantes, que je croyais d’abord réver et faire 
« quelque pétition de principe; mais plus de doute, c’est une 
« proposition très-certaine et très-exacte, que le rapport entre

les temps périodiques de deux planètes est précisément sesqui-
« altère du rapport des moyennes distances...... » (Harmonices
mundi.)

Ce sont ces trois lois qui conduisirent Newton, à l’aide d’une 
analyse savante et inattaquable, à la découverte du grand prin­
cipe de la gravitation universelle, principe qui régit tout le 
monde solaire.

§ V. — P rincipe df. la gravitation universelle.

348. Conséquences mathématiques des lois de Képler. — Le 
principe de la gravitation universelle est une conséquence ma­
thématique des lois de Képler.

1° Si les planètes n’étaient soumises à aucune force exté­
rieure, leurs mouvements seraient rectilignes. Puisqu’elles se 
meuvent en ligne courbe, il est nécessaire qu’il y ait une force
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extérieure qui modifie sans cesse leur direction dans l’espace  ̂
L’analyse*appliquée à la première loi de Kepler, démontre 
que cette force est constamment dirigée vers le centre du so­
leil : elle agit, comme le ferait une force d'attraction émanant 
de cet astre. On dit donc que c’est le soleil qui, par son attrac­
tion, retient chaque planète dans son orbite, et qui l’empêche de 
suivre à chaque instant la direction de sa vitesse acquise (1).

549 . — 2° La loi du mouvement elliptique, combinée avec 
celle des aires, fournit cette, seconde conséquence mathéma­
tique : La force attractive, qui retient chaque planète dans son 
orbite, varie en raison inverse du carré de sa distance au soleil. 
On la démontre à l’aide des principes de la mécanique. — 
Képler avait cru que l’attraction était réciproque à la simple 
distance.

550. — 3° La troisième loi conduit à celte dernière propo­
sition : A égalité de distance au soleil, la force motrice est pro­
portionnelle à la masse de chaque planète, et indépendante de 'sa 
nature particulière. En d’autres termes, toutes les planètes, 
grosses ou petites, placées à la même distance du soleil, tom­
beraient sur cet astre avec la même vitesse, quelle que fût leur 
nature. Cette vérité est aussi démontrée par les principes de 
la mécanique (2).

5 5 1 . I dées sur l’attraction, antérieures a New ton . __Ces
trois propositions constituent la loi générale connue sous le 
nom de principe de la gravitation universelle. Il s’est trouvé, 
dans tous les temps, même chez les anciens, des philosophes 
qui ont pensé que la terre possédait la force nécessaire pour 
retenir les corps autour de son centre, et que toute la matière 
de l’univers était douée d’une pareille tendance vers certains 
centres. A la fin du xvB siècle, Copernic soupçonne une attrac­
tion générale, et attribue à cette force la forme arrondie des 
corps célestes. Plus tard, Tycho-Brahé admet une force cen­
trale dans le soleil, pour retenir les planètes dans leurs orbites 
autour de lui. Yers le même temps, Képler croit que cette

(1) Cette conséquence a été connue de Képler.
(2) Nous avons consigné une démonstration élémentaire de ces trois con­

séquences dans nos Eléments de mécanique, liv. 111, ch. iv.
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attraction du soleil doit s’étendre à la terre et à la lune, qu’elle 
doit produire les inégalités du mouvement de ce satellite, et 
surtout qu’elle doit être réciproque, c’est-à-dire que les corps 
attirés parle soleil doivent aussi l’attirer lui-même. Ces idées 
sont adoptées par Fermât, par Bacon, par Hévélius, par Ro- 
berval et par le docteur Hook, dans le xvn" siècle. Mais aucun 
de ces savants distingués n’a formulé nettement la loi fonda­
mentale.

53Ü . P rincipe de la gravitation u n iv er selle : histoire de s a  

découverte. — «Il était réservé à Newton, dit Laplace (1), de 
« nous faire connaître le principe général des mouvements cé- 
« lestes. La nature, en le douant d’un profond génie, prit en- 
« core soin de le placer à l’époque la plus favorable. Descar- 
«tes avait changé la face des sciences mathématiques par 
« l’application féconde de l’algèbre à la théorie des courbes et 
« des fonctions variables ; Fermât avait posé les fondements 
« de la géométrie de l’inGni par sa belle méthode de Maximis 
« et Minimis et des tangentes ; Wallis, Wren et Huyghens 
« venaient de trouver les lois du mouvement; les découvertes 
« de Galilée sur la chute des graves, et celles d’Huyghens sur 
a les développées et sur la force centrifuge, conduisaient à la 
« théorie du mouvement dans les courbes ; Képler avait déter- 
«miné celles que décrivent les planètes, et entrevu la gravita- 
«tion universelle ; enfin Hook avait très-bien vu que leurs 
« mouvements sont le résultat d’une force primitive de pro- 
« jection, combinée avec la force attractive du soleil. La mé- 

• « canique céleste n’attendait ainsi, pour éclore, qu’un homme 
« de génie, qui, en généralisant ces découvertes, sût en tirer 
« la loi de la pesanteur. C’est ce que Newton exécuta dans son 
« immortel ouvrage des Principes mathématiques de la phi- 
« losophie naturelle. »

5 3 3 .— Né en I6i2, à Woolstrop, en Angleterre, Newton 
découvrit, avant l’âge de 27 ans, le calcul des fluxions (calcul 
infinitésimal), et la théorie de rémission de la lumière. Profes­
seur de mathématiques à l’Université de Cambridge, endC80,
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élu, en 1705, président delà Société royale de Londres, il con­
serva ce poste jusqu’à sa mort, arrivée en 1727. « Il jouit de la 
« plus haute considération pendant sa longue vie ; et sa na- 
« lion, dont il avait fait la gloire, lui décerna les honneurs fu- 
« nèbres les plus distingués. »

554. « En 1666, Newton, retiré à la campagne, dirigea 
« pour la première fois sa pensée vers le système du monde :
« la pesanteur des corps au sommet des plus hautes monta- 
«gnes, à très-peu près la même qu’à la surface de la terre, 
« lui fit conjecturer qu’elle s’étend jusqu’à la lune ; et qu’en 
« se combinant avec le mouvement de projection de ce satel- 
« lite, elle lui fait décrire un orbe elliptique autour de la terre. 
« Pour vérifier cette conjecture, il fallait connaître la loi de 
« diminution de la pesanteur. Newton considéra que, si la 
«pesanteur terrestre relient la lune dans son orbite, les pla­
ie nètes doivent être retenues pareillement dans leurs orbes 
« par leur pesanteur vers le soleil, et il le démontra par la loi 
«des aires proportionnelles aux temps. Or, il résulte du rap- 
« port constant trouvé par Képier entre les carés des temps 
« des révolutions des planètes et les cubes des grands axes de 
« leurs orbes, que leur force centrifuge, et par conséquent 
« leur tendance vers le soleil, diminue en raison inverse du 
« carré de leurs distances à cet astre : Newton transporta donc 
« à la terre celte loi de la diminution de la pesanteur. En par- 
« tant des expériences de Galilée sur la chute des graves, il 
« détermina la hauteur dont la lune, abandonnée à elle-même, 
« descendrait verslaterre,dans un court intervalledetemps(t).' 
« Celte hauteur est le sinus verse de l’arc qu’elle décrit dans le 
« même intervalle, sinus que la parallaxe lunaire donne en 
« parties du rayon terrestre : ainsi, pour comparer à l’observa- 
« tion la loi de la pesanteur réciproque au carré des distances, 
« il était nécessaire de connaître la grandeur de ce rayon. 
« Mais Newton, n’ayant alors qu’une mesure fautive du méri- 
« dien terrestre, parvint à un résultat ditférent de celui qu’il

(1) Nous donnons ce calcul d a n s  la note xvi, pour déterminer la masse du 
soleil.

2 50 LIVRE V. —  LES PLANÈTES ET LES COMÈTES.



« amendait ; et, soupçonnant que des forces inconnues se joi- 
« gnaient à la pesanteur de la lune, il abandonna ses idées. 
« Quelques années après, une lettre du docteur Hook lui lit 
« rechercher la nature de la courbe décrite parles projectiles 
« autour du centre de la terre. Picard venait de mesurer, en 
« France, un degré du méridien : Newton reconnut, au moyen 
« de cette mesure, que la lune était retenue dans son orbite 
« par le seul pouvoir de la gravité supposée réciproque au 
« carré des distances. D’après cette loi, il trouva que la ligne 
« décrite par les corps dans leur chute est une ellipse dont le 
« centre de la terre occupe un des foyers. Considérant ensuite 
« que Képler avait reconnu, par l ’observation, que les orbes 
« des planètes sont pareillement des ellipses, au foyer des- 
<; quelles le centre du soleil est placé, il eut la satisfaction de 
« voir que la solution, qu’il avait entreprise par curiosité, 
« s’appliquait aux plus grands objets de la nature. Il rédigea 
« plusieurs propositions relatives au mouvement elliptique 
« des planètes ; et le docteur Ilalley l’ayant engagé à les pu- 
<; blier, il composa son ouvrage des Principes mathématiques 
« de la philosophie naturelle, qui parut en 1687...

« Newton était parvenu à la loi de la pesanteur, au moyen 
«du rapport entre les carrés des temps des révolutions despla- 
« nètes et les cubes des axes de leurs orbes supposés circulai- 
« res. Il démontra que ce rapport a généralement lieu dans les 
« orbes elliptiques, et qu’il indique une égale pesanteur des 
« planètes vers le soleil, en les supposant placées à la même 
« distance de son centre. La môme égalité de pesanteur vers la 
« planète principale existe dans tous les systèmes de satellites; 
« et Newton la vérifia sur les corps terrestres par des expérien- 
« ces très-précises que l ’ona depuis plusieurs fois répétées...

«Eh généralisant ces recherches, le grand géomètre fit voir 
« qu’un projectile peut se mouvoir dans une section conique 
« quelconque, en vertu d’une force dirigée vers son foyer, et 
«réciproque au carré des distances : il développa les diverses 
« propriétés du mouvement dans ce genre de courbes : il 
a détermina les conditions nécessaires pour que la courbe soit 
« un cercle, une ellipse, une hyperbole ou une parabole, con-
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«ditions qui ne dépendent que de la vitesse et de la position 
«primitives du corps. Quelles que soient cette vitesse, cette 
«position et cette direction initiales du mouvement, Newton 
« assigna une section conique que le corps peut décrire et 
« dans laquelle il doit conséquemment se mouvoir : ce qui 
« répond au reproche que lui fit Jean Bernouilli de n’avoir 
« pas démontré que les sections coniques sont les seules 
« courbes que puisse décrire un corps sollicité par une force 
« réciproque au carré des distances. Ces recherches, appli- 
« quées au mouvement des comètes, lui apprirent que ces 
« astres se meuvent autour du soleil suivant les mêmes lois 
« que les planètes, avec la seule différence que leurs ellipses 
« sont très-allongées ; et il donna le moyen de déterminer, 
« par les observations, les éléments de ces ellipses.

« La comparaison de la grandeur des orbes des satellites et 
«de la durée de leurs révolutions, avec les mômes quantités 
«relatives aux planètes, lui fit connaître les masses et les den­
ti sités respectives du soleil et des planètes accompagnées de 
«satellites, et l’intensité de la pesanteur à leur surface.

«En considérant que les satellites se meuvent autour de 
«leurs planètes, à fort peu près comme si ces planètes étaient 
«immobiles, il reconnut que tous ces corps obéissent à la 
«même pesanteur vers le soleil. L’égalité de l’action à la réac- 
« tion ne lui permit pas de douter que le soleil pèse vers les 
« planètes, et celles-ci vers leurs satellites, et même que la 
« terre est attirée par tous les corps qui pèsent sur elle. Il 
« étendit ensuite cette propriété à toutes les parties de la ma- 
« tière ; et il établit, en principe, que chaque molécule de matière 
« attire toutes les autres en raison de sa masse et réciproquement 
« au carré de sa distanee à la molécule attirée.

«Ce principe n’est pas simplement une hypothèse, qui satis- 
« fait à des phénomènes susceptibles d’être autrement expli- 
« qués, comme on satisfait de diverses manières aux équations 
« d’un problème indéterminé. Ici le problème est déterminé 
« par les lois observées dans les mouvements célestes, dont ce 
« principe est un résultat nécessaire. La pesanteur des planètes 
« vers le soleil est démontrée par la loi des aires proportion-
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«nellesaux temps; sa diminution, en raison inverse du carré 
«des distances, est prouvée par l’ellipticité des orbes plané- 
«taires; et la loi des carrés des temps des révolutions, prc- 
«portionnels aux cubes des grands axes, montre avec évidence 
«que la pesanteur solaire agirait également sur toutes les 
« planètes supposées à la même distance du soleil, et dont les 
«poids seraient par conséquent en raison des masses. L’éga- 
« lité de l’action à la réaction fait voir que le soleil pèse à son 
«tour vers les planètes, proportionnellement à leurs masses 
«divisées parles carrés de leurs distances à cet astre. Les mou- 
« vements des satellites nous prouvent qu’ils pèsent à la fois 
«sur le soleil et sur leurs planètes, qui pèsent réciproque- 
« ment sur eux : en sorte qu’il existe, entre tous les corps du 
« système solaire, une attraction mutuelle, proportionnelle aux 
«masses et réciproque aux carrés des distances. Enfin leur fi- 
« gure sphérique et les phénomènes de la pesanteurà la surface 
«de la terre ne laissent aucun lieu de douter que cette altrac- 
«tion n’appartient pas seulement à ces corps considérés en 
«masse, mais qu’elle est propre à chacune de leurs molécules.»

5 dS. T ables astronomiques. — Telle est l’histoire de la plus 
grande découverte scientifique des temps modernes. Pour en 
présenter à nos lecteurs le résumé succinct, nous ne pouvions 
mieux faire que d’emprunter les pages qui précèdent au plus 
illustre successeur de Newton, au géomètre de génie dont les 
travaux ont le plus contribué à développer les innombrables 
conséquences du grand principe de la gravitation universelle. 
Newton n’a fait, pour ainsi dire, qu’ébaucher ces consé­
quences; il les a entrevues vaguement, ou ne les a qu’impar- 
faitement démontrées; souvent il n’a donné que des aperçus, 
toujours incertains, jusqu’à ce qu’une analyse rigoureuse en 
ait vérifié l’exactitude. Ce sont les géomètres français du 
xviii' siècle principalement, et Laplace à leur tête, qui, en 
appliquant l’analyse infinitésimale aux mouvements célestes, 
sont parvenus à expliquer, par la loi de la pesanteur, tous les 
phénomènes du système du monde, et à donner aux tables 
astronomiques la précision inespérée qui les caractérise 
aujourd’hui. Ce sont eux qui ont calculé les nombreuses iné­
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galités qui résultent de l’attraction mutuelle des divers corps 
du système solaire, et qui les ont introduites dans ces tables. 
Aussi peut-on aujourd’hui, à l’aide des formules établies, 
remonter aux états que ce système a subis dans les temps les 
plus reculés, et prédire avec certitude ceux qu’il subira dans 
l’avenir. Et la théorie de la gravitation universelle est si com­
plète, qu’elle a pu leur faire reconnaître un grand nombre 
d’inégalités nouvelles, que les observations n’avaient pas fait 
découvrir. Ce sont ces découvertes, faites à priori, et par la 
seule puissance de l’analyse, qui ont donné à cette belle 
théorie le degré de certitude qu’elle possède, et qui semble 
réservé aux vérités mathématiques.

§ VI. — Éléments elliptiques des planètes.

536. Noms des éléments elliptiques. — Pour pouvoir assi­
gner^ chaque instant, la position qu’une planète occupe dans 
l’espace, et, par suite, la direction suivant laquelle la verra 
l’observateur placé sur la terre, certaines données, qu’on 
nomme les éléments elliptiques de la planète, sont nécessaires 
à connaître. Ces éléments sont au nombre de sept, savoir :

1° La longitude du nœud ascendant, c’est-à-dire l’angle que 
la ligne, menée du soleil au nœud ascendant, fait avec la ligne 
des équinoxes;

2° L’inclinaison du plan de l’orbite surleplande l’écliptique;
3° La longueur du demi-grand axe de l’ellipse, c’est-à-dire 

la distance moyenne de la planète au soleil ;
v° L’excentricité, c’est-à-dire le rapport de la distance des 

foyers au grand axe ;
3° La longitude du périhélie, à laquelle on peut substituer 

l’angle que le rayon vecteur qui va du soleil au périhélie fait 
avec la ligne des nœuds ;

6° L’époque du passage de la planète au périhélie ;
7° La révolution sidérale de l’astre.
557. L e mouvement d’une planète est déterminé par ces sept 

éléments. — Les deux premiers éléments, la longitude du 
nœud et l’inclinaison, suffisent pour déterminer la position du
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plan de l’orbite dans l’espace, puisque d’ailleurs la ligne des 
nœuds passe par le soleil. Le troisième et le quatrième, le grand 
axe et l’excentricité, fixent complètement les dimensions de 
l’ellipse décrite. Le cinquième, la longitude du périhélie, dé­
termine la position de l’ellipse dans son plan, puisqu’on sait 
que le soleil en occupe un des foyers : l’angle du grand axe 
avec laligne des nœuds, que l’on peut substituer à cet élément, 
conduit au même résultat. Le sixième élément, l’époque du 
passage, indique à quel moment la planète était le puis près 
du soleil; et, quand on connaît la durée de la révolution sidé­
rale, c’est-à-dire le septième élément, on peut conclure, de la 
première loi de Képler, l’aire décrite parle rayon vecteur dans 
un temps donné, et par suite la position de la planète sur son 
orbite au bout de ce temps.

5iî8. R éduction des sept inconnues duproblème a s ix . — On 
voit, d’après cela, que le problème général de déterminer le 
mouvement d’une planète renferme sept inconnues qu’il s’agit 
de calculer. Cependant il faut remarquer que ces sept incon­
nues peuvent se réduire à six : car, d’après la troisième loi 
de Képler, les temps T et T'des révolutions sidérales de deux 
planètes et leurs demi-grands axes a, a', sont liés par la 
formule

T 2 _a®
T72 — a'3'

Or, la terre est une planète soumise aux lois de Képler, dont 
on connaît la révolution T et Je demi-axe a avec une grande 
précision : si donc on a déterminé le demi-axe a' de l’orbite 
d’une planète quelconque, la formule fera connaître la durée 
T  de sa révolution. Ainsi, le problème ne renferme réelle - 
ment que six inconnues.

La solution de ce problème repose sur des calculs qui sont 
en dehors du cours purement descriptif prescrit par le pro­
gramme. Nous indiquons (note xxx) les principes sur les - 
quels elle est fondée.

3o9. Yoici, d’après Y Annuaire, le tableau des résultats 
que l’on a obtenus, pour les planètes principales, parmi les-
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quelles nous comprenons la terre. Nous n’indiquons ni la lon­
gitude du nœud, qui varie avec le temps, par suite de la rétro­
gradation des nœuds, ni par conséquent la longitude du péri­
hélie, ni l’époque du passage, qui sont également variables. 
Ce tableau comprend l’inclinaison du plan de l’orbite sur l’é­
cliptique, le demi-grand axe ou la distance moyenne au soleil, 
rapportée à celle de la terre prise pour unité, l’excentricité 
rapportée au grand axe, puis le moyen mouvement diurne en 
secondes, la révolution sidérale en jours solaires moyens, et 
enfin la durée de la rotation de chaque planète sur son axe, 
évaluée aussi en temps moyen.

560. Remarques sur ce tableau. — En examinant ce ta­
bleau, on remarque que les plans des orbites sont fort peu in­
clinés sur l’écliptique, c’est-à-dire sur le plan de l’orbite de la 
terre ; car la plus grande inclinaison, celle de Mercure, ne 
dépasse guère 7 degrés. Par conséquent les planètes princi­
pales restent toutes, dans leurs mouvements, comprises dans 
la zone zodiacale.

On voit en môme temps que lesorbites sont presque circu­
laires ; caries excentricités sont toujours très-petiies. Celle de 
Mercure atteint 0,2; puis celle de Mars est au-dessous de 0,1, 
et les autres sont encore moindres.

On remarque encore que les planètes les plus voisines du 
soleil, qui sont aussi les plus petites, tournent sur elles-mêmes 
en 24 heures environ, comme la terre ; tandis que Jupiter et 
Saturne, qui sont les plus grosses et les plus éloignées du so­
leil, exécutent leur rotation en 10 heures à peu près.

Nous avons donné les durées des révolutions sidérales en 
jours solaires moyens à (P,0000001 près ; mais nous avons in­
diqué en même temps les nombres ronds, faciles à retenir, qui 
mesurent ces durées approximativement en mois ou en an­
nées. Ce sont ces nombres que l'ôn grave ordinairement dans 
sa mémoire.

361. Loi de Bode. — Les distances moyennes des planètes 
au soleil sont évaluées, dans le tableau qui précède, en pre­
nant pour unité la distance moyenne de la terre au soleil. On 
a cherché longtemps quelle loi pouvaient suivre ces distances ; 

cosu. c. 17
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le rapport singulier dont nous allons parler a été indiqué, ù 
la fin du siècle dernier, par Bode, astronome de Berlin. Il pa­
rait que Titius l’avait découvert le premier.

Si l’on considère la série suivante :
0, 3, 6, 12, 24, 48, 96, 192, 384.......... .

dans laquelle chaque terme, à partir du troisième, qui est 6, 
est double de celui qui le précède; et si l’on ajoute 4 à chacun 
d’eux, on obtient cette seconde série :

4, 7, 10, 16, 28, 52, 100, 196, 388..........
Si enfin on prend le dixième de chacun des termes de celle- 
ci, on obtient une troisième série :

0,4; 0,7; 1 ; 1,6; 2,8; 5,2; 10; 19,6; 38,8.......... ,
dans laquelle chaque terme représente approximativement la 
distance d’une planète au soleil, comme on peut le vérifier 
aisément en comparant ces nombres avec ceux qui sont con­
signés au tableau. Cependant, en faisant cette comparaison, on 
remarquera qu’il n’y a, parmi les planètes que nous avons 
inscrites, aucun astre dont la distance réponde au nombre 2,8. 
En outre, le dernier nombre 38,8 ne représente la distance de 
Neptune qu’avec une erreur de près de neuf unités, ou d’un 
quart environ.

Quoi qu’il en soit, en voyant la lacune qui existait entre 
Mars et Jupiter, Bode, et Képler avant lui, avaient conçu l’es­
poir que l’on découvrirait une planète à la distance 2,8 : nous 
verrons bientôt comment cette espérance s’est réalisée avec 
une profusion qu’ils étaient loin de soupçonner (chap. IV). La 
découverte des petites planètes télescopiques est donc venue 
confirmer cette loi singulière, et faire supposer que, loin d’in­
diquer une relation fortuite entre des distances indépendan­
tes les unes des autres, elle se rattache essentiellement à la 
constitution du monde solaire. Mais la découverte de Neptune 
a, dans ces dernières années, jeté du doute sur ces apprécia­
tion:;; et tend à prouver que la loi de Bode n’a aucune raison 
d’être. Cette loi n’en fournit pas moins une règle fort com­
mode à retenir, pour fixer approximativement les distances 
moyennes des diverses planètes au soleil.
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§ VII. —  E lém ents ph ysiq u es  des p l a n è t e s .

362. D iamètre apparent, diamètre réel, volume d’une pla­
nète. — Indépendamment des éléments astronomiques que 
nous avons indiqués dans le paragraphe précédent, on est 
parvenu à mesurer les dimensions, la masse, la densité des 
planètes principales. Comme elles présentent un diamètre 
apparent sensible, on en a conclu leur diamètre réel, comme 
nous l’avons fait pour le soleil et pour la lune. Les volumes 
des sphères, étant proportionnels aux cubes de leurs diamè­
tres, se déduisent immédiatement des longueurs de ces dia­
mètres.

363. Masse. — Les plus grosses planètes, Jupiter, Saturne, 
Uranus, Neptune, ont des satellites dont on connaît exacte­
ment la révolution : on peut en déduire la vitesse avec laquelle 
ces satellites, et en général des corps, soumis à l’attraction de 
ces planètes, et sans vitesse d’impulsion, tomberaient sur leur 
surface; on en conclut, par suite, la masse^le chacune d’elles, 
comme nous avons conclu la masse du soleil de la vitesse de 
chute de la terre (n° 181). Quant à celles qui n’ont pas de satel­
lites, on a déduit leurs masses des perturbations qu’elles font 
éprouver aux autres corps célestes qui les approchent ; mais 
les méthodes employées ne sauraient être exposées ici.

364. D ensité . — La densité moyenne d’une planète est le 
rapport de sa masse à son volume : elle est donc connue, quand 
ces deux derniers éléments sont déterminés.

363. P esanteur a la surface. — La pesanteur à la surface 
d’un de ces astres, étant proportionnelle à sa masse et inver­
sement proportionnelle au carré de son rayon, se déduit aisé­
ment des mesures précédentes.

366. Chaleur et  lumière. — Enfin l’intensité de la chaleur 
et de la lumière solaire varie suivant la loi de la raison in­
verse du carré de la distance au soleil ; on la conclut donc 
immédiatement de cette distance pour chaque planète.

567. T ableau des éléments physiques des planètes. — Nous 
inscrivons ces divers éléments dans le tableau suivant, pour
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les planètes principales. Le diamètre et le volume sont rap­
portés au diamètre et au volume de la terre. La masse de no­
tre globle est également prise pour unité, de même que sa 
densité moyenne. Nous rapportons enfin la pesanteur à la 
surface de chaque planète, à ce qu’elle est à la surface de la 
terre.

Nous joignons à ce tableau les diamètres apparents des pla­
nètes à leur périgée, à leur apogée, à leur distance moyenne 
de la terre, et ceux sous lesquels on les verrait si elles étaient 
placées à la même distance de nous que le soleil. Nous don­
nons aussi les aplatissements, tels que les fournissent la théo­
rie de l’attraction ou des mesures directes.

560. R emarque. — Nous avons peu de remarques à faire 
sur ce tableau. On voit que, dans leur mouvement autour du 
soleil, les planètes les plus voisines de la terre se rapprochent 
et s’éloignent beaucoup de nous : car le diamètre apparent de 
Vénus, par exemple, varie dans le rapport de six à un, celui 
de Mars varie dans le rapport de cinq à un ; et l’on sait que 
leurs distances sont inversement proportionnelles à ces dia­
mètres apparents (n° 133).

On voit, en outre, que les plus grosses planètes sont les 
plus éloignées du soleil, et que, tandis que les plus petites ont 
une densité moyenne comparable à celle de la terre, les 
plus grosses ont, comme le soleil, une densité beaucoup plus 
faible.

Ce sont aussi les plus grosses planètes qui, tournant le plus 
vile sur elles-mêmes, ont l’aplatissement le plus considérable. 
Cependant Mars présente une exception à cette règle : il 
tourne sur lui-même en vingt-quatre heures environ, comme

l
la terre ; mais son aplatissement, que P. Arago évalue à — ,

33
est dix fois plus grand que celui de notre globe. Ce résultat est 
une objection sérieuse à la théorie qui suppose que les corps 
célestes ont été primitivement en fusion, et qu’ils ont pris 
alors, en tournant sur eux-mêmes, la forme géométrique que. 
leur assignaient les conditions d’un équilibre stable.
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CHAPITRE II

FLANÈTES INFÉRIEURES : MERCURE ET VÉNUS, 

g I. — P r o g r e s s io n , s t a t io n  e t  r é t r o g r a d a t io n  d e s  p l a n è t e s  in f é r i e u r e s .

5G9. P lanètes in fér ieu res . — On appelle planètes inférieu­
res ou intérieures celles dont l’orbite est comprise dans l’or­
bite de la terre. On n’en connaît que deux : ce sont Mercure 
et Vénus.

570 . Mouvement apparent des planètes inférieures. — Les 
planètes inférieures ne peuvent jamais se trouver en opposi­
tion. Mais elles ont deux conjonctions : l’une, conjonction inté­
rieure ou inférieure, lorsqu’elles passent entre le soleil et la 
terre; et l’autre, conjonction supérieure ou extérieure, lors­
qu’elles sont au delà du soleil. Quelques jours après la con­
jonction inférieure, on voit la planète, le malin ,à l’orient, 
avant le lever du soleil; elle paraît alors s’en éloigner, en al­
lant d’orient en occident ; au bout de quelque temps, l’écart 
cesse de croître, la planète paraît stationnaire ; puis elle 
semble se rapprocher du soleil, allant ainsi vers l’orient, et 
elle finit par se perdre dans ses rayons. C’est alors qu’a lieu la 
conjonction supérieure. La planète reste quelque temps invi­
sible. Puis, quelques jours après, on la voit, le soir, à l’occi­
dent, se dégager et s’éloigner du soleil vers l’orient : l’écart 
prend encore une valeur maximum, après laquelle la planète, 
quelque temps stationnaire, semble de nouveau se diriger vers 
le soleil, c’est-à-dire vers l’occident, jusqu’à la conjonction 
inférieure. Ainsi, progression vers la conjonction supérieure, 
rétrogradation vers la conjonction inférieure, station à des épo­
ques intermédiaires : tels sont les aspects divers que nous 
présente le mouvement d'une planète inférieure.

571. E xplication des apparences. —Ces apparences s’expli­
quent avec une grande facilité. Supposons, en effet, que



S(fig. 115) soit le soleil, que PP'soit l’orbite delà planète, et 
que TT' soit celle de la terre ; et admettons que ces deux or­
bites soient situées dans le même plan, celui de l’écliptique. 
Comme la terre est plus loin du soleil que la planète, sa vi­
tesse angulaire est moindre. Sup­
posons, pour un instant, que la 
terre soit immobile en T, pendant 
une révolution de la planète. Lors 
de la conjonction inférieure, l’as­
tre est en P; il se meut dans le 
sens PP' vers l’orient; et il nous 
paraît, vu du point T, rétrograder 
à l’occident. A mesure qu’il s’ap­
proche du point P', où la droite TP 
est tangente à son orbite, sa vitesse 
doit paraître se ralentir. En P', il se meut sur la tangente elle- 
même, et il nous semble immobile ; mais bientôt il vient en 
P", et il paraît alors se diriger vers l’orient avec une vitesse 
croissante jusqu’à l’époque de la conjonction supérieure en P". 
Puis il passe de l’autre côté, et il nous paraît alors à l’orient 
du soleil ; il se dirige encore vers l’orient avec une vitesse 
décroissante, jusqu’à ce qu’il arrive enP,T, sur la tangente TP1V. 
Il semble alors stationnaire, parce qu’il décrit cette tangente 
pendant quelques jours; puis il paraît rétrograder vers l’occi­
dent, jusqu’à la conjonction inférieure.

On voit ainsi comment le mouvement de la planète autour 
du soleil, toujours dirigé d’occident en orient, doit nous pa­
raître tantôt direct, tantôt nul et tantôt rétrograde, à nous qui 
sommes placés en dehors de son orbite. La terre, il est vrai, ne 
reste pas immobile pendant ce temps : cependant, malgré son 
mouvement, qui est de même sens, mais plus lent que celui 
de la planète, l’explication précédente reste la même. Les 
choses se passent comme si, la terre étant immobile, la pla­
nète avait une vitesse moindre que celle qu’elle a en réalité : 
à la révolution sidérale il faut substituer la révolution synodi- 
que, qui est plus longue, pour obtenir la période complète du 
phénomène. Les stations ont lieu ainsi chaque fois à des épo-
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ques plus reculées et dans les diverses régions du ciel.
572. É l o n g a t io n , d ig r e s s io n s . — On nomme élon ga tion  d’une 

planète la différence entre les longitudes géocentriques de la 
planète et du soleil. La d ig ress io n  est l’élongation maximum 
d’une planète inférieure : on distingue la d ig re ss io n  occiden ta le  

et la d ig re ss io n  o r ie n ta le .  Les digressions de Mercure ne dépas­
sent pas 28°, celles de Yénus 48°.

§  I I .  —  P h a s e s  d e s  p l a n è t e s  in f é r i e u r e s .

575. — P hases de V énus et  de Mercure. — Les planètes in­
férieures présentent des phases complètement analogues à 
celles de la lune, et qui s’expliquent de la même manière. Car 
(fig. 116), lors de la conjonction inférieure, la partie éclairée

est invisible pour nous ; 
c’csl l’époque de la nou ­

v e lle  p la n è te . Quelques 
jours après, on voit l’astre 
sous la forme d’un crois­
sant. A la station occiden­
tale, la planète présente 
l’aspect d’un demi-cer­
cle : c’est le premier 
quartier . Puis le dis - 
que s’élargit, à mesure 
qu’elle s’approche de la 
conjonction supérieure. 

On ne la voit plus alors que difficilement, parce qu’elle est 
perdue dans les rayons du soleil ; mais dans les jours qui pré­
cèdent et dans ceux qui suivent, on l’aperçoit sous forme 
d’un cercle entier. Puis, en passant à l’orient du soleil, son 
disque s’échancre progressivement. A la seconde station, 
arrive le dernier quartier. Et enfin le croissant va se rétré­
cissant, et finit par disparaître à la conjonction inférieure.

Il n’estpas nécessaire de répéter l’explication que nous 
avons donnée pour les phases de la lune (n°“ 242 et suiv.) : il

Fig. 116.



suffit de rappeler que la partie à lafois éclairée et visible de la 
planète est déterminée par deux plans menés par son centre, 
et perpendiculaires, l’un à la droite qui joint les centres de la 
planète et du soleil, l’autre à la droite qui joint ceux de la pla­
nète et de la terre.

Ce fait avait été prédit comme conséquence du système de 
Copernic, et il a été vérifié aussitôt qu’on a pu se servir des té­
lescopes.
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§ III. — M ercure 5.

5 7 4 .Monographie de Mercure. — Mercure est rarement vi­
sible, parce qu’il est presque toujours plongé dans les rayons 
du soleil. Sa distance à cet astre n’est que de 14700000 lieues 
environ. Cependant il était connu des anciens. On n’a guère 
pu distinguer les accidents de sa surface : on croit toutefois 
qu’il a une atmosphère, des montagnes, etc. L’observation de 
ses phases est fort difficile, à cause de sa petitesse et de sa 
proximité du soleil. Il brille comme une étoile de quatrième 
grandeur.

Il tourne sur lui-même, et l’angle que fait le plan de son or­
bite avec celui de son équateur est très-grand. Il en résulte que 
les variations des saisons y sont considérables.

La chaleur et la lumière y sont près de sept fois plus inten­
ses qu’à la surface de la terre.

§ IV. — Vénus J.

57o. Monographie de V énus. — Vénus est la brillante pla­
nète connue sous les noms d'étoile du soir ci.(Yétoile du matin. 
C’est lorsqu’elle est en quadrature qu’elle a le plus d’éclat 
(parce que, lorsqu’elle est pleine, elle est trop voisine du so­
leil, et, en môme temps, trop éloignée de nous) : elle est alors 
si brillante, qu’on la voit quelquefois en plein jour. Ses phases 
sont beaucoup plus faciles à observer que celles de Mercure. 
Comme elle est cinq ou six fois plus près de nous vers l’épo-



que de la conjonction inférieure que vers le temps de la con­
jonction supérieure, elle paraît d’autant plus grosse que son 
croissant est plus étroit; et ses phases présentent les variations 
de grandeur du diamètre apparent que nous avons essayé de 
représenter dans la figure 117.

Les variations que présentent les cornes du croissant font 
supposer qu’il existe à la surface de Vénus de très-hautes mon-
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Fig 117.

tagnes : on pense qu’elle est entourée d’une atmosphère ana­
logue à la nôtre. Sa distance au soleil est d’environ 27486000 
lieues; et la chaleur et la lumière y ont à peu près deux fois 
autant d’intensité qu’à la surface de la terre. Le plan de son 
orbite est fort incliné (72°) sur celui de son équateur. Les va­
riations des saisons doivent donc y être très-grandes ; et la 
durée des jours et des nuits doit y éprouver des changements, 
considérables, dans l’intervalle d’une révolution.

Vénus d’ailleurs présente de grandes analogies avec la terre: 
elle tourne sur elle-môme dans le même temps; elle a, à peu 
près, le même volume, la même masse et la même densité 
moyenne.

376. — La durée de sa révolution synodiqueest de£>84 jours: 
elle parcourt, pendant cette période, deux circonférences en­
tières, plus 216°. Donc, après cinq révolutions synodiques ou 
2620 jours,ou 8 années communes, elle aura parcouru 10 cir­
conférences plus S fois 216°, c’est-à-dire 13 circonférences. On 
voit qu’après 8 années communes, c’est-à-dire après 8 ans 
moins 2 jours, les conjonctions de Vénus avec le soleil arri­
vent au même point du ciel.

377. P assage de Vénus sur le disque du soleil. — Vénus,



comme Mercure, peut, lors de la conjonction inférieure, passer 
sur le disque du soleil. Mais il faut, pour cela, comme pour les 
éclipses, que la planète soit dans le voisinage d’un de ses 
nœuds. On la voit alors, comme une tache noire parfaitement 
ronde, traverser le disque d’un mouvement uniforme, de gau­
che à droite. Son diamètre apparent est, dans ce cas, d’envi­
ron 1', et il est ^ de celui du soleil. Le passage peut durer 
6 ou 7 heures.

5 7 8 .  P ériode des passages. — Ce phénomène se reproduit 
périodiquement. On en calcule l’époque, comme celle des 
éclipses. Mais ces passages sont rares : les deux derniers ont 
eu lieu en 1761 et 1769. Après un passage, il s’écoule 8 ans 
avantqu’il s’en présente un second; puis le troisième ne revient 
qp’après 113 ans| rh 8 ans, et ainsi qu’il suit : 8 ans, 121 ans J, 
8 ans, 105 ans|, etc. Les deux passages prochains auront lieu 
le 8 décembre 1874, et le 6 décembre 1882. Ils ont lieu en 
décembre ou en juin, époques auxquelles les longitudes du so­
leil sont255° 00 75”, c’est-à-dire cellesdes nœuds de la planète.

Il est facile de se rendre compte de l’irrégularité apparente 
de cette période. En effet, pour qu’il y ait passage, il ne faut 
pas seulement qu’il y ait conjonction inférieure; il faut en­
core, comme nous l ’avons dit, que la planète ait, à cette épo­
que, une latitude moindre que le demi-diamètre apparent du 
soleil : sans quoi elle ne se projetterait pas sur le disque so­
laire.

Or Vénus se retrouve en conjonction inférieure tous les 
584 jours; mais ses positions sur son orbite, à ces époques 
successives, diffèrent comme celles de la terre surl’écliptique: 
ses latitudes doivent donc aussi être différentes, et, par suite, 
il peut arriver que le passage n’ait pas lieu.

Supposons, par exemple, qu’une conjonction inférieure ait 
lieu au moment où Vénus est à son nœud, c’est-à-dire dans le 
plan de l’écliptique ; il y a, dans ce cas, nécessairement pas­
sage, et la planète décrit sensiblement le diamètre du soleil. 
Pour qu’une autre conjonction donne lieu à un autre passage, 
il faudra que Vénus soit encore près de son nœud, et la terre 
au même point de l’écliptique. Or, après 8 ans moins
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2 jours, la planète se trouve en conjonction pour la cin­
quième fois (car 8 fois 365̂  =  5 fois 584J ; et la terre se trouve 
sensiblement au même point de son orbite. Mais Vénus ne se 
retrouve pas exactement à son nœud; car ce nœud a un mou­
vement rétrograde sur l’écliptique. En huit ans, la latitude de 
la planète varie, en général, par suite de ce mouvement, 
de 20 à 24' : or, le demi-diamètre apparent du soleil n’est 
que de 16' environ; on voit donc qu’il pourra fort bien ne 
pas y avoir alors un second passage. Ce dernier ne • ourra 
même avoir lieu qu’aulant qu’à l’époque du précédent la pla­
nète ne se trouvait pas encore à son nœud. On voit, en même 
temps, que trois passages consécutifs, à 8 ans d’intervalle, 
ne sont pas possibles, puisqu’en 16 ans, la latitude da 
Vénus varie d’au moins 40'. Mais, au bout de 113 ans envi­
ron, la latitude redevient la même : de sorte qu’après cette 
période de temps, il arrive un nouveau passage, qui 
peut être précédé ou suivi d’un autre, à 8 ans d’inter­
valle.

579. Mesure de la parallaxe du soleil. — Les passages de 
Vénus sur le disque du soleil offrent le moyen le plus exact 
que nous connaissions de mesurer la parallaxe du soleil, et, 
par suite, sa distance à la terre, et les dimensions du système 
planétaire. Les passages de 1701 et de 1769, le dernier sur­
tout, ont été observés avec soin par des astronomes de diver­
ses nations; et ce sont leurs observations qui ont fourni la va­
leur 8",86, que nous avons indiquée pour la parallaxe solaire. 
11 nous serait difficile d’exposer complètement ici les calculs 
qui ont servi à cette détermination; mais nous pouvons en in­
diquer l’esprit en peu de mots.

Lors du passage, Vénus se trouve environ deux fois et 
demie plus près de nous que le soleil; sa parallaxe a donc 
une valeur très-appréciable. Il en résulte que des observa­
teurs, placés en des points suffisamment éloignés du globe 
terrestre, doivent voir la planète décrire des cordes différentes 
du disque solaire. Ainsi (fig. 118), soient T la terre, V Vénus, 
et S le disque du soleil perpendiculaire à la ligne ST; lés 
observateurs placés en A, B, K, voient, au même instant,
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l'astre projeté en Y', Y", Y'"; et il leur parait décrire les cordes 
différentes, CD, EF, GH.

Or, supposons, pour simplifier, que les deux observateurs 
A et K soient placés 
aux extrémités d’un 
diamètre terrestre, 
et faisons abstrac­
tion du mouvement Fj„ | 13i
de rotation de la
terre. Chacun d’eux pourra mesurer la corde qu’il voit décrire 
à la planète, soit directement, soit en évaluantle temps du pas­
sage (car, le mouvement angulaire de Yénus étant parfaitement 
connu, le temps fournira l’espace parcouru). Les deux cordes 
CD et GH étant déterminées, on en conclura aisément leur 
distance V'V'". Cela posé, les deux triangles semblables AYK, 
Y'VY"', donnent

y V' y'y'*
Â Y =  AK '

YV'Or on trouve (t) que le rapport des distances de Vénus au

soleil et à la terre est 2 f environ, au moment de la conjonc­
tion : donc

V'V'" =  AK X  2| =  5r,

en désignant par r le rayon terrestre. Ainsi la distance des 
deux cordes vaut cinq fois le rayon de la terre. Donc l’angle, 
sous lequel on voit de la terre la distance V'V'", vaut cinq fois 
l’angle sous lequel on verrait du soleil le rayon terrestre, ou 
cinq fois la parallaxe solaire. Donc, en prenant le cinquième 
de la distance V'V"’ mesurée tout à l’heure, on aura la paral­
laxe cherchée.

(I) Voir la note xxxi, à la fin du volumo.
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CHAPITRE III

PLANÈTES SUPÉRIEURES : MARS, JUPITER, SATURNE, URANUS, 
NEPTUNE.

§ I. — Progression, station, rétrogradation des planètes supérieures.

580. P lanètes supérieures. — Les planètes supérieures ou 
extérieures sont celles dont l’orbite comprend l’orbite de la 
terre. Les principales sont : Mars, Jupiter, Saturne, Uranus et 
Neptune; ce sont celles dont nous nous occuperons dans ce 
chapitre.

381. Mouvement apparent des planètes supérieures. — Une 
planète supérieure, étant plus éloignée du soleil que la terre, 
se trouve alternativement en opposition et en conjonction, par 
suite de son mouvement de translation. Au moment de l’op­
position, la planète, qui passe au méridien vers minuit, est 
visible pendant toute la nuit ; elle paraît alors animée d’un 
mouvement rétrograde vers l’occident ou vers la droite de 
l’observateur. Puis ce mouvement se ralentit, et l’astre semble 
stationnaire au milieu des étoiles ; alors il n’est visible que le 
soir à l’occident, après le coucher du soleil, et pendant la 
première partie de la nuit. Quelques jours après, la planète se 
dirige vers l’orient, et son mouvement s’accélère à mesure 
qu’elle approche de la conjonction : en même temps le mo­
ment de son coucher suit presque immédiatement celui du 
soleil ; et elle finit par devenir invisible, quoique très-éclairée, 
parce qu’elle se trouve à peu près dans la direction du soleil 
et au delà de cet astre. Bientôt on aperçoit la planète, à l’o­
rient, le matin, un peu avant le lever du soleil : elle continue 
alors à se déplacer dans le sens direct, à travers les étoiles ; 
et le moment de son lever précède de plus en plus celui du 
soleil. Puis, son mouvement direct se ralentit, et finit par 
s’annuler : on la voit alors pendant la seconde partie de la 
nuit. Enfin le mouvement rétrograde se manifeste de nouveau
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et va s’accélérant jusqu’à l’époque de l’opposition, en même 
temps que l ’heure de son lever se rapproche de plus en plus 
de celle du coucher du soleil. Ainsi, mouvement direct vers la 
conjonction, mouvement rétrograde vers l'opposition, station 
entre ces deux époques : tels sont les aspects divers que nous 
présente le mouvement d’une planète supérieure.

5 8 2 . E xplication des apparences,en supposant la planète im­
mobile. — Ces apparences sont dues à la différence des vitesses 
angulaires de la terre et delà planète; mais ici, c’est la vitesse 
de la terre qui est la plus grande. Pour rendre l’explication 
plus nette, nous supposerons encore que la planète est dans 
le plan de l ’écliptique; et nous admettrons d’abord qu’elle est 
immobile, tandis que la terre exécute sa révolution autour du 
soleil. Soient (fig. H9) : S le soleil, TT'T" l’orbite de la terre, 
et PP'P" celle de la planète que nous supposons d’abord im­
mobile en P. Soit, à ce moment, T la position de la terre : la 
planète est en opposition, elle nous 
milieu des étoiles de cette région.
A mesure que la terre s’avance vers 
T', la planète, qui nous semble tou­
jours à l’extrémité du rayon visuel, 
paraît décrire l’arc pp', en sens ré­
trograde. Si l’on mène la tangente 
PH à l’orbite terrestre, on voit que 
ce mouvement rétrograde conti­
nuera en se ralentissant, jusqu’à ce 
que la terre soit en H : alors la pla­
nète paraît en h. C’est là le point 
du ciel où elle semble stationnaire 
pendant quelques jours ; car la terre décrit alors sensiblement 
la tangente PH, et voit toujours l’astre dans la même direc­
tion. Mais, à mesure que la terre se transporte vers T„ le 
rayon visuel HP s’incline en sens inverse, et va rencontrer la 
sphère céleste à l’orient de h : on voit donc la planète revenir, 
dans le sens direct, de h en p', puis de p' en p, lorsque la terre 
s’approche de la conjonction C. Le mouvementjie la terre 
continuant vers T,, le mouvement de la projection de la pla­

paraît projetée en p au
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nète continue aussi vers p" ; mais, lorsque la terre arrive en 
H' sur la tangente H'P, l’astre se projette, pendant quelques 
jours, en un point fixe /(' : c’est la seconde station. Puis, lors­
que la terre va de H' en T, la planète paraît rétrograder de 
h' en p. Et, après l’opposition, les mômes apparences se repro­
duisent dans le même ordre.

5 8 3 .  E xplication dans l 'hypothèse du mouvement de la pla­
nète . — La planète n’est pas fixe, comme nous l’avons sup­
posé, pendant la révolution de la terre; elle décrit, dans le 
même sens, un certain arc de son orbite, PF, par exemple. 
Ce mouvement ne changepasl’explication précédente. Il n’a 
d’autre effet que de placer l’opposition nouvelle de la planète 
dans une autre région, et, par suite, de substituer la révolu­
tion synodique à la révolution sidérale pour la période des 
divers mouvements. 11 rend ainsi plus longues les durées des 
stations et rétrogradations. En outre, ces stations n’ont pas 
lieu dans les mêmes régions du ciel.

5 8 4 .  E ffet  de l’inclinaison de l’orbite. — Quant à la faible 
inclinaison de l’orbite de la planète sur celle de la terre, que

nous avons négligée, 
elle a un effet d’un 
autre genre. Il ré­
sulte de ce qui pré­
cède que, si les deux 
plans se confondaient 

la perspective delà courbe apparente, décrite par la planète, 
se confondrait avec le grand cercle de l’écliptique : dans l’état 
réel des choses, cette perspective est une courbe en zigzag 
assez compliquée (fig. 120), mais dont la partie rétrograde est 
toujours moindre que la partie correspondante au mouvement 
direct.

§ II. —  P h a s e s  d e s  p l a n è t e s  s o p é r ie o b e s .

5 8 5 .  Calculdes phases pourlesplanètes supérieures. __On
ne peut citer que Mars qui ait des phases ; les autres planètes 
sont trop éloignées de nous. En effet, le calcul démontre (I)

(!) Voir la note xxxu, à la fin du volume.
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que l’echancrure est pour Mars de moins du quart du rayon, 
et qu’elle se réduit à 0,019 pour Jupiter et 0,0055 pour Sa­
turne. Elle est donc complètement insensible pour ces deux 
dernières planètes. Quant à Mars, vers les quadratures, il doit 
avoir l’apparence qu’offre la lune trois ou quatre jours avant 
ou après l’opposition.

§ III. — Mars <j (fig. 175, planche III).

506. Monographie de Mars. — Mars est la moins éloignée 
des planètes supérieures. Il est six ou sept fois plus petit que 
la terre, et sa cfistance moyenne au soleil est d’environ 58 mil­
lions de lieues. Le plan de son équateur est incliné sur celui 
de son orbite de 28° 48'. Les saisons doivent donc y éprouver 
à peu près les mômes variations que sur la terre.

Sa révolution sidérale est de 687 jours environ, et sa révo­
lution synodique est de 780 jours à peu près.

507. — Mars brille comme une belle étoile, d’une couleur 
rougeâtre très-prononcée. Lorsqu’on l’examine à l’aide d’une 
lunette, on aperçoit des taches sombres d’une teinte verdâtre 
due sans doute à un effet de contraste. Elles disparaissent tou­
jours avant d’avoir atteint le bord du disque apparent. Ces 
faciles sont permanentes à la surface de la planète. Mais d’au­
tres taches blanchâtres apparaissent périodiquement et alter­
nativement aux deux pôles de l’astre, et oflrent une analogie 
frappante avec les glaces de nos régions polaires. Il semble 
que les neiges et les glaces, amoncelées au pôle nord de la pla­
nète, pendant l’hiver, se fondent au soleil de l’été, tandis 
qu’elles se forment et s’accumulent au pôle austral, sur lequel 
l’hiver sévit à son tour.

588. — Arago, qui a publié, dans les dernières années de 
sa vie, le résultat des observations d’un demi-siècle sur le 
monde solaire, nous apprend que, d’après scs mesures pho­
tométriques, les taches blanchâtres des régions polaires réflé­
chissent deux fois plus de lumière que les régions équato­
riales : c’est un trait de ressemblance de plus. Il faut donc 
admettre l’existence d’une atmosphère autour de Mars. Arago

18COSM. G.



a reconnu que le centre est plus rouge que les bords ; ce qui 
confirme l’existence de l’atmosphère.

Enfin, après avoir discuté les observations qui donnaient, 
pour l’aplatissement de la planète, des valeurs fort discor­
dantes, l’illustre astronome a annoncé qu’il se croyait en 
droit d’assigner à cet astre un aplatissement égal à j,. La 
théorie ne donne qu’une valeur de 5½ environ.

§ IV. — J upiter ^  (fig. 176, planche III).

5 0 9 .  MoNOGRApniE de Jupiter. —  Jupiter est la plus grosse 
des planètes qui circulent autour du soleil ; son volume est 
treize cent quatre-vingt-dix fois celui de la terre. Sa distance 
au soleil vaut près de 200 millions de lieues. Un observateur, 
placé sur la planète, ne verrait l’astre qui l’éclaire que sous un 
angle de 6' environ. L’intensité de la chaleur et celle de la 
lumière doivent y être 25 ou 30 fois moindres qu’à la surface 
de la terre.

5 9 0 .  — Jupiter tourne, sur lui-même, autour d’un axe 
presque perpendiculaire à l’écliptique (86° 51' 30"), et par 
suite presque perpendiculaire à son orbite. Le soleil s’écarte 
donc très-peu de son équateur, et la température doit y être 
à peu près invariable pendant l’année. D’ailleurs la rotation 
n’ayant qu’une durée de 10 heures, le jour et la nuit ont cha­
cun une durée de 5 heures environ. Cette rotation rapide a 
pour conséquence un aplatissement considérable aux pôles ; 
on trouve en effet que cet aplatissement est de

5 9 1 .  — Jupiter met environ 12 ans à faire sa révolution 
autour du soleil ; il décrit à très-peuprès un degré en 12 jours, 
ou trente degrés en un an. Ainsi, en un an, Jupiter passe 
d’une constellation dans la constellation zodiacale qui est 
à l’orient de la première. Sa révolution synodique est de 
399 jours.

5 9 2 .  — Cette planète semble une étoile blanche, un peu 
jaunâtre, très-brillante, quoique d’un éclat inférieur à celui 
de Yénus. A l’aide d’une lunette, on voit sur son disque des 
bandes alternativement sombres et brillantes, parallèles à
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l’équateur de la planète. On voit aussi s’y former de temps en 
temps des taches brunes très-irrégulières, qui ont servi à dé­
terminer sa rotation.

§ V. — Saturne i, (fig. 177, planche III).

593. Monographie de S aturne. — Saturne, moins gros que 
Jupiter, est cependant plus de huit cent soixante fois plus 
gros que la terre. Sa distance moyenne au soleil est égale à 
362 millions de lieues. Il tourne sur lui-même, comme Jupi­
ter, en 10 heures î à peu près ; et son axe fait avec le plan de 
l’orbite un angle de 6 i degrés. La valeur de son aplatisse­
ment, est en rapport avec la rapidité de cette rotation.

394. — Saturne ne nous envoie, à cause de sa distance au 
soleil, qu’une .lumière pâle et comme plombée. Lorsqu’on 
l’observe à l’aide d’une lunette, on aperçoit sur son disque, 
comme sur celui de Jupiter, des bandes alternativement 
sombres et brillantes, parallèles à son équateur.

Cette planète met plus de 29 ans à accomplir sa révolution 
sidérale ; elle parcourt un degré en 30 jours, un signe en 
2 ans f . Sa révolution synodique a une durée de l “n 13 À

593. A nneau de Saturne. — Saturne présente une exception 
unique dans le système solaire. Il est entouré d’une espèce 
d’anneau opaque, circulaire, large et mince, à peu près plan, 
sans adhérence avec la planète, et qui la ceint par son milieu. 
Galilée le découvrit presque aussitôt après l’invention des lu­
nettes; mais il ne put se rendre compte des singulières appa­
rences qu’il présente successivement. Il s’offre ordinairement 
à nos yeux sous la forme d’une ellipse qui s’élargit peu à peu, 
puis se rétrécit, et finit par disparaître, pour reparaître quel­
ques mois après. Ce fut Huyghens qui comprit le premier â 
quelle cause il fallait attribuer ces aspects divers.

590. — Ces apparences singulières sont évidemment l’effet 
des positions relatives qu’occupent Saturne, le soleil et la 
terre. Car l’anneau paraît le prolongement de l’équateur de 
la planète, et fait avec l’écliptique un angle de 28 degrés. Si 
le plan prolongé de l’anneau laisse d’un même côté la terre
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et le soleil, nous voyons la face tournée vers nous puisqu’elle 
est éclairée. Si le plan va passer par le soleil, nous n’en 
voyons plus que la tranche, qui apparaît, dans de fortes lu­
nettes, comme une ligne lumineuse. Enfin si le plan prolongé 
passe entre le soleil et la terre, la face obscure est seule tour­
née vers nous, et l’anneau est invisible. Or, c’est là ce qui 
arrive réellement. En effet, l’anneau reste, dans le mouve­
ment de translation de la planète, constamment parallèle à 
lui-môme. Si donc on examine la figure 121, et qu’on se rap­
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pelle l’explication que nous avons donnée de l’inégalité des 
jours et des nuits par suite du mouvement de translation de 
la terre (n° 228), on voit facilement qu’en s ou en s", à l’é­
poque des équinoxes de la planète, la tranche seule de l’an­
neau est éclairée; qu’en s'c’est la face boréale, et qu’en s‘" 
c’est la face australe qui reçoit les rayons du soleil ; qu’ainsi 
la terre, en se déplaçant sur son orbite TT', qui a un rayon 
près de dix fois moindre, doit, vers le temps des équinoxes 
de Saturne, tous les quinze ans environ,-être placée de ma­
nière à ne plus voir l’anneau; et qu’elle doit être située aux 
autres époques, de manière à voir tantôt l’une et tantôt l’au­
tre face. Ajoutons encore que, quand l’anneau norss présente 
sa face obscure, on voit qu’il projette une ombre sur le dis­
que de la planète. L’anneau a disparu en 1848; puis il nous 
a montré sa face australe, laquelle a obtenu sa plus grande 
largeur en 1855; le petit axe de l’ellipse de projection a été



à peu près la moitié du grand axe ; il a disparu de nouveau 
en 1863 ; maintenant on voit sa face boréale, sous des angles 
divers.

5 0 7 .  Subdivisions de l’anneau. — Cet anneau n’est pas sim­
ple; il est composé de deux anneaux concentriques, séparés 
l’un de l’autre par un intervalle obscur. Ces anneaux sont 
sans doute formés de matières fluides; car on les voit se sub­
diviser l’un et l’autre, de temps en temps, en anneaux secon­
daires. On a même découvert, en 1830, un troisième anneau 
intérieur, faiblement lumineux. Pour qu’un pareil système 
ne tombe pas sur Saturne, il faut qu’il ait un mouvement de 
rotation autour de la planète. Laplace a démontré en elfet, et 
l’observation a confirmé, que ces anneaux tournent ensemble 
dans leur plan, autour de leur centre commun, en 10 heu­
res |  environ, c’est-à-dire avec la même vitesse angulaire que 
la planète elle-même.

5 9 8 . D imensions de l’anneau. — On a pu, dans les circons­
tances les plus favorables, mesurer l’angle sous lequel on voit 
la largeur des anneaux, et les distances angulaires de leurs 
bords intérieurs et extérieurs au centre de la planète ; et 
comme on connaît la distance réelle de Saturne, et l’inclinai­
son des diamètres réels, on en a déduit facilement les dimen­
sions véritables. On a trouvé :

Rayon équatorial de Saturne............  =  6 4 0 0 0  kilom. =  1 6 0 0 0  lieues.
Rayon intérieur de l’anneau intérieur =  9 4 0 0 0  kilom. =  2 3 5 0 0  lieues.
Rayon extérieur de l’anneau intérieur =  1 2 0 0 0 0  kilom. =  3 0 0 0 0  lieues.
I n t e r v a l l e  d o s  d e u x  a n n e a u x .................... =  3 0 0 0  k i lo m .  =  7 6 0  l i e u e s .

Rayon intérieur de l’anneau extérieur =  123000 kilom. =  30750 lieues.
Rayon extérieur de l’anneau extérieur =  142000 kilom. =  35500 lieues.

Ainsi la largeur totale des anneaux réunis vaut 48000 kil. ou 
12000 lieues, c’est-à-dire les £ du rayon équatorial de la pla­
nète. L’anneau laisse un espace vide de 30000 kil., ou 7500 
lieues, entre Saturne et lui ; à travers ce vide on peut aperce­
voir les petites étoiles qui sont au delà. Quant à l’épaisseur de 
l’anneau, on ne la connaît pas ; mais on suppose qu’elle n’a 
pas plus de 120 kilomètres ou 30 lieues.
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§ VI. —  UltAKDS ¢ .

599. D écouverte d’U ranus. — Les cinq planètes que nous 
venons d’étudier étaient connues des anciens astronomes. 
Celles dont il nous reste à parler n’ont été découvertes que de­
puis moins d’un siècle, et la plupart d’entre elles depuis quel­
ques années seulement.

C’est Herschel qui découvrit, en 1781, la planète Uranus. 
En recherchant avec son puissant télescope les étoiles dou­
bles, il aperçut un disque rond, bien terminé, d’un éclat uni­
forme et un peu terne. Il vit ensuite l’astre se déplacer peu 
à peu parmi les étoiles voisines, et il reconnut ainsi l’existence 
d’une nouvelle planète.

400 . Monographie d’U ranus. — On voit cette planète à l’œil 
nu, comme une étoile de sixième grandeur. Herschel calcula 
son orbite et mesura son diamètre. Beaucoup plus petite que 
Saturne, elle est cependant 75 fois plus grosse que la terre. Sa 
distance au soleil dépasse 728 millions de lieues; elle met 
84 ans à faire sa révolution annuelle. On ne sait si elle tourne 
sur elle-même; mais l’analogie, et surtout son aplatissement, 
qu’on évalue à |,  semble indiquer une rotation rapide.

4 0 1 . — La durée de sa révolution synodique est de 369 
jours |.

La surface du soleil doit y paraître les 0,003 de ce qu’elle 
est pour nous : la chaleur et la lumière doivent donc y être 
extrêmement faibles.

3 VII. —  N e p t u n e  $  .

402. Découverte de Neptune. — Lorsqu’on veut déterminer 
à l’avance, par le calcul, la position qu’une planète doit oc­
cuper dans le ciel à une époque donnée, il ne suffit pas de 
calculer l’ellipse que l’attraction centrale du soleil lui fait par­
courir; il faut encore tenir compte des attractions secondai­
res des autres planètes, qui exercent une petite influence sur 
sa marche, et qui la font dévier légèrement de son orbite. Ces-



perturbations dépendent à la fois de la masse de l’astre atti­
rant, et de sa distance à la planète dont on étudie le mou­
vement.

Tant qu’il ne s’est agi que des anciennes planètes connues, 
le calcul des perturbations s’est trouvé constamment d’accord 
avec les résultats des observations; de sorte que les positions 
de ces divers astres pouvaient être assignées à l’avance avec 
une étonnante précision. Mais il n’en a pas été de même pour 
Uranus. En appliquant au mouvement de cette planète les 
méthodes qui avaient si bien réussi pour les autres, en déter­
minant les perturbations que devaient lui faire éprouver Sa­
turne et Jupiter (les seules qui pouvaient avoir sur elle une 
action appréciable), on a trouvé constamment, pendant qua­
rante ans, le calcul en désaccord croissant avec les observa­
tions. Comme aucune erreur ne s’était glissée dans ce calcul, 
il fallait admettre que le désaccord était dû à une planète 
perturbatrice, jusqu’alors inconnue. Il était réservé à un 
jeune géomètre français de développer cette conjecture, et de 
découvrir la nouvelle planète, à l’aide d’une savante analyse. 
M. Le Verrier aborda en effet celle question, en renversant 
le problème ordinaire : au lieu de déterminer les perturba­
tions qu’une planète de masse connue devait produire sur Ura­
nus à une distance connue, il se proposa de calculer la masse 
que devait avoir une planète inconnue, et la distance à la­
quelle elle devait se trouver, pour produire les perturbations 
qu’indiquait l’observation. Et il résolut ce magnifique pro­
blème, malgré ses difficultés innombrables. Un jour, le 
31 août 1846, il annonça à l’Académie des Sciences que la 
planète cherchée devait se trouver par 326° 32' de longitude 
héliocentrique, au milieu des étoiles de la XXI' heure (celles 
dont les longitudes sont comprises entre 313 degrés et 330 de­
grés). Moins d’un mois après, M. Galle, directeur de l’obser­
vatoire de Berlin, qui avait à sa disposition Iss cartes récem­
ment gravées de cette région du ciel, découvrait la planète 
dans le champ de son télescope, à la place que lui avait as­
signée le géomètre français. Il n’y avait pas une différence 
d’un degré entre le résultat du calcul et celui de l’observation!
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Celte découverte est, à coup sûr, un des plus beauxtriomphes 
de l’astronomie moderne, et une des preuves les plus écla­
tantes de la vérité du principe de l'attraction universelle.

403. Monographie de N eptune. — Arago, chargé de nom­
mer la nouvelle planète, lui donna le nom de celui qui l’avait 
si savamment trouvée : cependant on est convenu aujourd’hui 
de l’appeler Neptune; son signe est un trident. Elle parait 
comme une étoile de 9° grandeur; elle a, dans les plus fortes 
lunettes, un disque sensible. Plus grosse qu’Uranus, elle a une 
densité un peu supérieure à celle de cet astre. Sa distance au 
soleil est de plus de 1100 millions de lieues. La chaleur et la 
lumière n’y sont que la millième partie de ce qu’elles sont à 
la surface de la terre.
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CHAPITRE IV

TLANÈTES TÉLESCOPIQUES.

404. D écouverte des quatre premières petites planètes. —  
Képler, en examinant les rapports des distances des planètes 
connues au soleil, avait remarqué qu’un hiatus (suivant son 
expression) existait entre Mars et Jupiter, comme nous l’avons 
déjà dit en parlant de la loi de Bode (n° 361). Il avait pensé 
qu’il pourrait bien exister une planète, dont l’orbite serait 
comprise entre celles de ces deux astres. Les recherches entre­
prises en Allemagne pour la découvrir n’amenèrent aucun 
résultat; et elles étaient abandonnées, lorsque, le 1" janvier 
1801, Piazzi, directeur de l’observatoire de Palerme, occupé 
à former un catalogue d’étoiles, découvrit fortuitement Cérès. 
Puis Olbers, illustre astronome de Brême, en étudiant la ré­
gion du ciel où se mouvait Cérès, découvrit Pallas, aussi par 
hasard, le 28 mars 1802. C’est encore accidentellement que 
Harding, en 1804, constata l’existence dcJunon, en explorant 
le firmament.



405. P rocédés pour en découvrir d’autres. — Jusqu’ici, 
c’est le hasard seul qui a présidé à ces découvertes : c’est qu’en 
effet, pour des astres aussi petits que ceux-là, et dont l'in­
fluence perturbatrice sur les autres est complètement nulle, il 
est difficile que la théorie puisse prévoir leur existence. L’as­
tronome n’a donc pas d’autre ressource que celle de diriger 
sa lunette vers une région du ciel, et de comparer ce qu’il y 
voit avec ce qu’on y a vu antérieurement. Aperçoit-il un astre 
qui n’est pas indiqué sur la carte de cette région dessinée an­
térieurement, il mesure avec soin ses coordonnées pour re­
connaître si elles sont variables; et, dans ce cas, il proclame 
l’existence d’un nouvel astre errant, et il calcule les éléments 
de son mouvement. N’y trouve-t-il plus, au contraire, un 
point lumineux, qui était, sur sa carte, désigné comme une 
étoile, c’est que ce point était une planète, dont il recherche 
alors la position nouvelle.

406. H ypothèse d’Olbers. — Il est bien rare (c’est même un 
fait unique dans l’histoire de la science) que des considérations, 
comme celles qui ont amené M. Le Verrier à voir Neplune au 
bout de sa plume, permettent à l’astronome d’annoncer à l’a­
vance l’existence d’une planète inconnue. Cependant ce n’est 
pas le hasard seul qui a conduit Olbers à la découverte de 
Vesta. Il avait cru remarquer, en effet, que les orbites de Cé- 
rès et de Pallas se coupaient en deux points de l’espace, par 
lesquels vint à passer ultérieurement l’orbite deJunon. Il ima­
gina, en conséquence, que ces petits astres pouvaient être les 
fragments d’une grosse planète qui aurait fait explosion dans 
l’un des deux points communs aux trois orbites, et que sans 
doute d’autres fragments devaient venir, à chaque révolution, 
passer par les mêmes points. Il s’attacha donc à explorer, 
chaque année, les régions du ciel correspondantes à ces 
points, et le succès couronna ses efforts : car, le 29 mars 1807, 
il découvrit Vesta.

4 0 7 . Monographie des quatre premières petites planètes.—  
Ces quatre planètes sont appelées planètes télescopiques, parce 
qu’elles ne sont visibles que dans les télescopes. Cérès et Pallas 
ont, à peu près, le même volume : il est de celui de la
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terre. Junon est un peu plus petite que ces deux planètes. 
Quant à Vesta, c’est la plus petite et la plus brillante : son vo­
lume n’est guère que de celui de la terre.

Leurs orbites sont toutes comprises entre celles de Mars et 
de Jupiter, et leurs distances au soleil sont à peu près 2,8.

408. N ouvelles petites planètes. — Cérès, Pallas, Junon et 
Yesta ont été, pendant 40 ans, les seules planètes dont la po­
sition ait réalisé les conjectures de Képler. Mais, depuis 1845, 
jusqu’à ce jour, divers astronomes en ont découvert chaque 
année un grand nombre d’autres, télescopiques aussi, com­
prises également entre Mars et Jupiter : huit d’entre elles 
appartiennent à la seule année 1852. Huit autres ont été dé­
couvertes en 1857, neuf en 1861, dix en 1868. Il n’est pas 
improbable que d’autres encore restent à découvrir. M. Le 
Verrier, dans un savant travail, présenté à l’Académie des 
sciences en novembre 1853, est arrivé à la conclusion sui­
vante : La somme totale de la matière, constituant les petites pla­
nètes situées entre les distances moyennes 2,20 et 3,16 ne peut dé­
passer environ le quart de la masse de la terre.

409. T ableau des petites planètes. — Voici le tableau des 
éléments des cent cinq petites planètes connues aujourd’hui 
(avril 1869). On remarquera que les inclinaisons de leurs 
orbites sur le plan de l’écliptique sont plus considérables que 
celles des planètes principales, et que les excentricités sont 
aussi plus grandes. Quelques-unes n’ont pas encore reçu de 
nom, et leurs éléments ne sont pas encore connus.

Nous croyons utile d’indiquer dans ce tableau les noms des 
astronomes qui ont découvert ces petits astres, ainsi que la 
date de chaque découverte.
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C ércs....................
Pallas....................
Junon...................
Vesta....................
Astrée........ .........
Hébé....................
Iris .......................
F lore....................
Métis....................
H jg ie ...................
Parthenope.........
Victoria...............
Egér'ie..................
lrene....................
Eunomia..............
Psyché.................
Thetis...................!
Melpomene......... '
Fortuna........, . .  1
Massalia............... 1
Lutetia.................;
Calliope...............
Thalie...................

(D

(U
(*)
B)

(«)
(")
(8)
(9)

(10) 
(H)

k

1.¾
(i«)
0 ’
d*i
(19)
H
■21)
2!)

(23)

*iazzi.
Olbers.
Harding.
Sbers.
lencke.
lencke.
Hind.
Hind. 
ïraham. 
le Gasparis. 
de Gasparis. 
lind.
le Gasparis. 
lind.
le Gasparis. 
de Gasparis. 
^uther. 
lind .
Ilind.
de Gasparis. 
•oldschmidt. 

Hind.
Ilind.

cr janvier 1801
8 mars 1802 
1*r  septem. 1804
9 mars 1807 
8 décembre 1845 
1cr juillet 1847
3 août 1847
8 octobre 1847 
6 avril 1848
4 avril 1849
1 mai 1850 
3 septemb. 1850
2 novemb. 1850
9 mai 1851 

29 juillet 18 il 
17 mars 1852 
17 avril 1852 
24 juin 1852 
22 août 1852 
19 septemb. 1852
15 novembre 1852
16 novembre 1852 
15 décembre 1852

1
771 ", 
770 ; 
814 
978
857 
939 
96»

1086
962
634
924
996
858 
854

1039
711
913

1020
930
949
934
715
833

1861j.
1684
1592
1323
1511
1380
1346 
1193
1347 
2043 
1402 
1301 
1511 
1518 
1247 
1824 
1420 
1270 
1393 
1366 
1388 
1812 
1557 
2034

2,767
2,770
2,669
2,361
2.577 
2,425
2.386 
2,2"2
2.387 
3,151 
2,452 
2,333
2.577 
2,585 
2,267 
2,921 
2,473 
2,296 
2,441 
2,409 
2,433 
2,909 
2,629 
3,142

,080
,239
,237
,090
,189
,202
,231
,157
,12»
,101
,100
,219
,089
),169
»,047
),1-6
1,127
0,2l8 
*,158 
0,14 4 
0,162 
0,104 
0,232 
), 123

1 ;°36’2î" 
34 42 41
13 3 21
7 8 16 
5 19 23

14 6 32 
5 18 2 
5 43 3 
5 25 58
3 57 11
4 37 1
8 43 19 

16 32 14
9 26 44
4 35 48 
3 4 0
5 35 28

10 9 17 
1 32 31 
0 41 7 
3 5 9

13 44 52 
10 13 11 
0 49 26

Phocæa................ '
Proserpine..........1
E uterpe............... '
Bellonc................1
Amphitrite..........
Uranie................. 1
Euphros.ne..........1

S i

i
(29)
(30) 
31)

Chacornac.
Luther.
Hind.
Luther.
Marth.
Hind.
Fcrgusson.

6 avril 1853 
5 mai 1853 
8 novembre 1853 
le r jn a rs  1854 
1er mars 1854 

22 juillet 1854 
1er septem. 1854 

26 octobre 1854

954
820
987
768
869
975
634
853

1359
1581
1314
1689
1492
1319
2044
152)

2,401
2,656
2,347
2,775
2,555
2,366
3,151
2,587

),253
0,087
),17.»
0,155
0,o7i
',126
0,221
0,0^2
0,340
0,107
0,221
0.302
0,175

21 35 5 i
3 35 48
1 35 31 
9 22 33
6 7 50
2 5 56 

26 27 28
5 29 3

Polymnie............. (33)
(3V;

Chacornac.
Chacornac.

23 octobre 18o4 
6 avril 1855

733
806

1769
1603 2,686 

2,998 
2,745 
2,642 
2,740 
2,771 
2,268 
2,767 
2,440 
2,204 

1 2,423 
1 2,721 
2, *30 

,2,883 
3,109 
3,082 
2,651

5 26 29
Leucothee........... (**)(38)

Sy
(13
(“ )
(45
(46)
47)

i â

Luther.
Goldschmidt.

19 avril 1855 
5 octobre 1855

684
780

1895
1662 18 42 12

Luther. 5 octobre 18a5 826 1569 r  r ii o' t
I é h Chacornac. 12 janvier 1856 784 1657 10 20 *0
Laetitia.................
Harmonia............
Daphné................
Isis.......................
Ariane.................

Chacornac.
Goldschmidt.
Goldschmidt.
Pogson.
Pogson.
Goldschmidt.

8 février 1856 
3t mars 1856
22 mai 1856
23 mai 1856 
15 avril 1857 
27 mai 1857

769
1039
771
931

1085
941

16*4
1247
1682
1392
1195
1378

0,0*6
0,270
0,209
0,168
0,150

‘4 15 52
16 5 31 
8 34 30 
3 27 48 
3 41 43 
6 34 57
2 17 49
5 0 0
6 29 28
3 8 46 
2 47 46

Goldschmidt. 27 juin 1857 791 1639 0,16G
0,131
0,077
0,237
0,287
0,066
0,101
0,202
0,199
0,145
0,233

Hostia..................
Aglaïa..................
Doris....................
Pales....................

Pogson.
Luther.
Goldschmidt.
Goldschmidt.
Luther.

16 août 1857 
15 septemb. 1857 
19 septemb. 1857 
19 septemb. 1857 
19 octobre 1857 
22 janvier 1858 
6 février 1858 
4 avril 1858 

10 septemb. 18:8 
10 septemb. 1858 
9 septemb. 1358

832
725
647
636
822

1470 
1788 
2003 
1977 
1577 
1330 

I  1993 
15.9 

i 1623 
1674 

! 1529

N em ausa............
Europa.................
Calypso................
Alexandra...........
Pandore...............

(sn
52

jw jU)
(55)

' (56;

Laurent.
Goldschmidt.
Luther.
Goldschmidt.
Searle.
Goldschmidt.

650 
837 
796 
77 V 
847

IsllOO 
'2,620 
2,709 
2,759 
2,598 
3,157 
2,700 

! 2,714 1 2,983 
2,394 

.3,131
2,397 
2,681 
3,420 
2,651 
2,422 

' 2,780 
2,972 

! 2,613
.2,756 
2,266

7 24 35 
5 6 45 

11 46 58
7 13 50
8 2 14

Mnemosyne.........
Concordia............
Olympia...............
Danaë...................
Echo.....................

1® 159) 
: (60) 

(61; 
(62)

Luther.
Luther.
Chacornac.
Goldschmidt.
Fergusson.
Forster et Lesser.

22 septemb. !8o9 
10 avril 1860 
12 septemb. 18 (̂ 
19 septemb. 1860 
15 septemb. 186( 
14 septemb. 1830

632
800
794
689
953
640

2049 
! 1621 
i 1633 
j 1882

1353
2024

0,043 
",11H 
0 16: 
'»,184 
0,170 
0,127

5 1 51 
8 37 15 

l8 16 57 
3 34 27 
2 12 31 
5 45 25

1 (63) de Gasparis. 10 février 186 956 1 1356
: 6 V Tenipei.

Tempel.
4 mars 1361 808 | 1603 0’,12C

0,158
3 23 10 
3 4 15 
5 59 39
7 57 35
8 28 19 

U 38 20 
23 18 30

5 23 55 
2  24 34

Maxim iliana........ i M
8 mars 186
9 avril 186

561 
822

1 2310 
1577

Asia....................
L e to .. . .............

1 («7
i (68)

Pogson.
Luther.
Schiaparclli.
Goldschmidt.
Luther.
Peters et SafTort.

17 avril 1*6 
29 avril 186 
29 avril 186

742
665
093

1377
1693
1871

0*188
0,17*

(70;
71)

(72)
(73)

5 mai 186 840 1543
13 août 136 775 . 1671 o’i*

0,04
0,238

1040 1246
816 1589 2,66»

2,779
2,670Tempel. 29 août 186 766 1632

(75) 22 septemb. 186 
21 octobre 186

813 1593
(76)
m
78)

Darre*t. 569 2276 3,386 2 27 48
Fpi^ri 15 novembre 185 812 1597 2 ,6 ^
D i u n Luther. 16 mars 186 836 1550 0,19

(79) W'alson. 14 septemb. 186 
2 mai 186

923 1395 2̂ 29®
2,859
2,753
2,432

(80) Pogson.
Tempel.
Luther.

102)
1766
1670
1385

T erpsichore.... (81)
(82)

30 septemb. 186 
27 novembre 186 
26 avril 186 
25 août 186

776
936
078

0,22 2 51 26

(»3) de Gasparis.
Clio..................... (84) Luther. ’ 1
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lo .......................... (85) C .  H . F. Peters. 19 septemb. 1863 821' 1579 j. 2,654 0,191 11°53'13'
Semé l é . . ; ........... (86) Tiefjan. 4 janvier 1886 646 2005 3,112 0,210 4 47 40
Sylvia................... ( 8 7 ) Pogson. 16 mai 1866 544 2384 3,493 0,031 10 51 22
Tiiisbé.................. (88) C. H. F. Pclcrs. 20 juin 1866 770 1683 2,769 0,165 5 14 35
Julia ..................... (89) Stéphan. 6  a o û t 1866 871 1487 2,550 0,180 16 11 25
Antiopc................ CJU) L u t h e r . l®r octobre 1866 6 9 2030 3,137 0,171 2 16 39
F.ginc................... (91) B o r e l l y . 4 novembre 1866 867 1495 2,558 0,088 2 9 25
Uüdine................. (9*) C. H. F . Peters. 7  j u i l l e t 1867 622 2082 3,191 0.104 9 56 22

MB (93) Walson. 2V août 1867 7 7 6 1669 2,754 0,133 8 35 35
DD (94) Walson. 6  s e p t e m b . 1867 631 2055 3,164 o,o:o 8 5 57

Arélhusc............. ( 9 3 ) L u t h e r . 2 3  n o v e m b r e 1867 660 1964 3,069 0,148 12 52 7
Eglé...................... ( 9 8 ) Coggia. 1 7  f é v r i e r 1868 664 1954 3,056 0,142 16 5 42
C l o l h o ............................. (97) T e m p e l . 17 février 1868 814 1592 2,669 0,257 11 44 58
l a n l h e ............................. (98) C. H. F. Peters. 18 avril 1868 807 1607 2,685 0,189 15 32 35

aa (99) B o r e l l y . 2 8  m a i 1868
Hécate................. > 0 0 ) Walson. 1 1  j u i l l e t 1 9 f i8 C.6 2007 3,114 0,151 6 33 35
Hélène................. O U I ! W al*on. 15 août 1868
Miriam................. (102 C. 11. F. Peters. 23 août 1868

» n < i ‘ « ! Walson. 7 septemb. 18CX |
H» no-.; \N atson. 13 septf-mb. IR f .x

”

(IÜ5. Walson. IC  « e p t c i i . b . 1 5 6 8
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C H A P I T R E  V

S A T E L L I T E S  DES P L A N È T E S .

Satellites de Jupiter, leurs éclipses. — Vitesse de la lumière. — Satellites 
de Saturne, d’Urauus et de Neptune.

§ I. — Mouvements des satellites autour de leur planète.

-410. Lois des mouvements des sa tellites. — On appelle sa­
tellites d’une planète des astres qui circulent autour de cette 
planète, pendant que celle-ci tourne elle-même autour du 
soleil. La lune est le satellite de la terre.

La plupart des planètes principales ont des satellites. Ces 
petits astres ne sont pas visibles à l’œil nu ; ils n’ont été décou­
verts que depuis l’invention des télescopes.

Si l’on applique à la détermination de leurs mouvements 
les méthodes que l’on emploie pour les mouvements des pla­
nètes, on reconnaît qu’ils obéissent aux trois lois de Képler ; 
c’est-à-dire que chacun d’eux décrit autour de sa planète, 
d’occident en orient, une ellipse dont elle occupe le foyer, 
avec une vitesse variable telle que les aires sont proportion­
nelles aux temps. En outre, quand plusieurs satellites circu­
lent autour d’une même planète, les carrés des temps de leurs 
révolutions sidérales sont proportionnels aux cubes de leurs 
moyennes distances à l’astre central. Il résulte de là qu’ils 
sont soumis, comme les planètes, au principe de l’attraction 
universelle, attraction proportionnelle aux masses, et récipro­
quement proportionnelle aux carrés des distances.

-411. Conséquence relative au mouvement de la terre . —  
Ainsi une planète et le groupe de ses satellites forment un petit 
inonde, image réduite du monde solaire, obéissant aux mê­
mes lois, où les satellites jouent le rôle des planètes, et où la 
planète joue le rôle du soleil. C’est là sans doute une des 
preuves les plus concluantes en faveur du double mouvement



de la terre. Car nous voyons les satellites de Jupiter, par exem­
ple, tourner autour de leur planète, en même temps que nous 
voyons cette planète tourner sur elle-même et circuler au­
tour du soleil. Ces mouvements sont parfaitement réels ; il 
est impossible de les contester. Et cependant un observateur, 
placé sur cet astre, se croirait immobile, et verrait le ciel 
tourner autour de lui en 10 heures, d’orient en occident, le 
soleil tourner en sens contraire en 12 ans, et les satellites ac­
complir aussi leurs révolutions en des temps inégaux. Ce sont 
les apparences que nous offrent le ciel, le soleil et la lune : 
puisque ces apparences n’ont rien de réel pour les planètes, 
il est bien naturel d’admettre qu'elles n’ont rien de réel non 
plus pour nous.

412. Satellites de J upiter . — Jupiter a quatre satellites, 
qui se meuvent à très-peu près dans le plan de son orbite. 
Leur distance à la planète est faible, de sorte qu’en passant 
derrière elle, ils entrent toujours (du moins les trois premiers) 
dans le cône d’ombre qu’elle projette dans l’espace ; et ils 
sont ainsi éclipsés à chaque révolution. De même, en passant 
devant elle, ils projettent sur le disque une ombre ronde et 
noire, et produisent ainsi, pour la planète, une éclipse de so­
leil. Ces faits prouvent que la planète et ses satellites sont des 
corps opaques.

En observant avec soin les taches des satellites, on a pu re­
connaître que, comme la lune, ils présentent toujours la 
même face à Jupiter. Car nous en voyons sucessivement 
toutes les faces dans une de leurs révolutions ; et le retour 
périodique des taches, combiné avec la durée de leur mouve­
ment, a permis d’en conclure le fait que nous venons d’é­
noncer.

413. S atellites de Saturne, d’Ubanus, de N eptune. — Sa­
turne a huit satellites, Uranus en a quatre, et Neptune en a un. 
Ils ne sont guère visibles qu’à l’aide de très-puissantes lunet­
tes. Deux satellites d’Uranus, le troisième et le quatrième, ont 
été découverts par W. Herschel en 1787 : les deux autres, le 
premier et le second, par Lassel en 1851. Par une exception 
unique, les orbites du troisième et du quatrième sont circu-
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laires; les plans de ces orbites sont inclinés de 79 degrés sur 
celui de l’écliptique, et leur mouvement est rétrograde.

4 1 4 .  Éléments connus des satellites. — Nous donnons 
ici le tableau des éléments connus de ces divers astres ; la 
durée de la révolution est exprimée en jours moyens; la dis­
tance à la planète centrale, en rayons de cette planète ; le 
diamètre, le volume, la masse, la densité moyenne, sont rap­
portés à la terre.

On remarquera que les satellites achèvent, presque tous, 
leur révolution dans un intervalle de temps moindre que la 
lune.

g  II . —  Vitesse de la lumière.

4 1 o . Comment nous votons les éclipses des satellites de J u­
p it e r . — Les éclipses des satellites de Jupiter ont conduit Rœ- 
mer, en 1675. à mesurer la vitesse de la lumière. Pour com­
prendre le procédé qu’il mit en usage, soient (fig. 122) : S le 
soleil, TT' l’orbite de la terre, et JJ' celle de Jupiter. Au mo­

ment de l’opposition, la terre 
est en T; et Jupiter, placé en 
J, nous dérobe la vue de son 
cône d’ombre : par conséquent 
nous ne pouvons voir, à celte 
époque, aucun des satellites en­
trer dans le cône ou en sortir. 
Lors de la conjonction, la terre 
est en T" ; et Jupiter, se trou­
vant à nos yeux dans les mômes 
régions que le soleil, est invi­
sible pour nous. Mais lorsque 

la terre est en T"' ou en T', en dehors de la ligne SJ, elle 
peut voir un satellite pénétrer dans le cône d’ombre en 
s, ou en sortir en s' .• elle voit, dans le premier cas, la lu­
mière du satellite diminuer graduellement et s’éteindre, 
tandis que, dans le second, elle le voit recouvrer progressi­
vement son éclat. Les deux premiers satellites sont trop voi-



sins de la planète pour qu’on puisse voir à la fois l’immersion 
dans le cône et l’émersion; l’une des deux phases a lieu der­
rière le disque : l’autre est seule visible pour nous. Ainsi 
en T' nous ne voyons que l’émersion en s' ; et en T"', nous 
n’apercevons que l’immersion en s.

410. I ntervalle variable de deux émersions ou de deux im­
mersions consécutives.— Si l’on observe spécialement le pre­
mier satellite de Jupiter, qui, comme nous l’avons dit, pénètre 
dans le cône d’ombre à chaque révolution, on reconnaît que, 
vers l’époque de l’opposition, le temps qui s’écoule entre deux 
émersions consécutives est égal à 42A28m 48*. A mesure que la 
terre s’avance sur son orbite vers la position T', on voit le 
temps qui sépare deux émersions successives augmenter gra­
duellement ; et la différence atteint 14 secondes, au moment 
delà quadrature. A partir de cet instant, l’intervalle, toujours 
supérieur à 42A 28m 48% va en diminuant; et il reprend sa va­
leur primitive vers l’époque de la conjonction. Puis, à mesure 
que la terre, continuant sa route, s’avance vers T'", on voit le 
temps qui sépare deux immersions consécutives diminuer 
progressivement; et la différence est encore 14 secondes au 
moment de la quadrature. Mais alors, l’intervalle, toujours infé­
rieur à 42A 28m 48*, va en augmentant ; et il reprend, vers 
l'opposition, sa valeur primitive.

Ainsi le temps qui sépare deuxémersions ou deux immersions 
consécutives a, pendant une révolution synodique de Jupiter, 
une valeur variable, qui passe par un maximum à l’époque 
de la quadrature qui suit l’opposition, et par un minimum à 
l’époquederautrequadrature, et qui atteint sa valeur moyenne 
lors de la conjonction et lors de l’opposition.

417. E xplication de ces variations. — On explique ces va­
riations périodiques de la manière la plus satisfaisante, en 
admettant que la vitesse de la lumière n’est pas infinie, et 
qu’un temps appréciable doit s’écouler avant que la lumière 
réfléchie par le satellite, au sortir du cône d’ombre, parvienne 
jusqu à nous. En effet, vers le moment de l’opposition, la dis­
tance de Jupiter à la terre reste sensiblement la même, pen­
dant quelque temps; le retard de la lumière, aux deux émer- 

cosm. g. l ’J
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sions consécutives, est donc aussi le môme; et les 42A 28”* JS* 
que l’on obtient alors mesurent la durée réelle de la révolu­
tion synodique du satellite. Mais, à mesure que la terre s’a­
vance vers la quadrature, elle s’éloigne de Jupiter, et la lu­
mière réfléchie doit parcourir, pour l’atteindre, une distance 
plus considérable; l’intervalle qui sépare deux émersions 
consécutives doit donc s’augmenter du temps que la lumière 
emploie à parcourir la différence des distances. Or cette dif­
férence des distances va en augmentant jusqu’à la quadrature, 
époque à laquelle elle est égale à l’espace même parcouru par 
la terre en &  28m 48' (car, à cette époque, la terre décrit la 
tangente menée par Jupiter à son orbite) ; puis elle diminue, 
et devient nulle à l’époque de la conjonction. Donc l’intervalle 
de deux émersions consécutives doit aller en augmentant de 
l’opposition à la quadrature et en diminuant de la quadrature 
à la conjonction ; et cet intervalle doit reprendre sa valeur 
primitive à la fin de cette période, puisque la distance de Ju­
piter à la terre redevient alors sensiblement constante pen­
dant plusieurs jours.

On expliquera tout aussi facilement comment, lorsque la 
terre passe de la conjonction à l’opposition, l’intervalle des 
immersions consécutives doit aller d’abord en diminuant, 
atteindre son minimum au moment de la quadrature, puis 
augmenter graduellement, et reprendre enfin sa valeur pri­
mitive.

418 . V itesse  de la lumière. — L’explication qui précède 
nous permet de mesurer la vitesse de la lumière. En effet, si 
l’on observe les 100 émersions qui ont lieu depuis l’opposi­
tion jusqu’à la conjonction, chacune d’elles n’est pas visible 
42A 28m 48' après celle qui la précède : elle paraît éprouver un 
certain retard que l’on peut évaluer, et qui est dû à la varia­
tion de la distance. Or il est facile de voir que la somme de 
tous les retards est égale au temps que la lumière met à par­
courir le diamètre de l’orbite de la terre. D’ailleurs, pour 
obtenir la valeur de cette somme, on observe, d’une part, deux 
émersions aussi voisines que possible, l’une de l’opposition, 
l’autre de la conjonction, et on évalue le temps qui les sépare
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l’une de l’aulre; puis on calcule, d’autre part, le temps qui 
devrait les séparer, à raison de 42* 28m 48s par révolution, si 
la distance ne variait pas; et on prend la différence des deux 
intervalles. On trouve ainsi que la lumière emploie \ 6 m36 * 

à parcourir le diamètre de l’orbite de la terre. Elle emploie donc 
8m 18' ou 498* à venir du soleil jusqu’à nous. Or la distance du 
soleil à la terre est à peu près 37 millions de lieues : il en ré­
sulte que la lumière parcourt sim m  Heues, ou environ 77000 
lieues en une seconde.

4 1 9 .  Conséquences delà vitesse limitéede la lumière. — Il 
résulte de ce fait que nous ne voyons jamais un phénomène 
céleste que quelque temps après son apparition. S’il se passe 
à une distance égale à d rayons de l’orbite terrestre, nous le 
voyons498’ X  d, après qu’il a eu lieu. Si le soleil venait à 
s’éteindre subitement, nous le verrions encore pendant 8"* 18*. 
Si une étoile nouvelle venait à être créée aujourd’hui, nous 
ne la verrions que dans quelques années ; et il y a peut- 
être des étoiles qui ont été anéanties depuis longtemps, et 
dont nous recevons encore la lumière qui est émanée d’elles 
avant leur disparition. Lorsqu’une éclipse totale de soleil com­
mence pour nous, il y a déjà plus d’une seconde que l’astre 
est entièrement éclipsé; et, lorsque le premier rayon lumi­
neux nous arrive du bord occidental de la lune, il y a plus 
d’une seconde qu’il est parti.

4 2 0 . Remarque. — L’une des conséquences les plus remar­
quables de la vitesse limitée de la lumière est le phénomène 
de Y aberration. On peut consulter sur ce point la note XXXIII, 
placée à la On du volume.

§ III. —  M e s u r e  d e s  l o n g it u d e s  t e r r e s t r e s .

4 2 1 .  Usage des éclitses des satellites de Jupiter pour la 
mesure des longitudes. — Les éclipses si fréquentes des satelli­
tes de Jupiter servent à déterminer les longitudes en mer, et 
à résoudre ainsi l’un des problèmes les plus utiles à la navi­
gation. On a vu que la longitude d’un lieu A du globe (n° 73) a 
pour mesure la différence des heures sidérales que l’on compte,
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au même instant physique, au point A et sous le premier mé­
ridien; et que cette différence (n° 153) est exprimée par le 
même nombre en temps moyen. Le problème consiste donc à 
trouver, à un instant donné, l’heure qu’il est au lieu A, et 
l’heure qu’il est sous le premier méridien, et à convertir la 
différence en degrés, à raison de 15 degrés par heure.

Or, le marin détermine l’heure du lieu où il se trouve, à 
l’aide d’un calcul de trigonométrie dans lequel il fait usage 
de la hauteur du soleil, ou d’une planète, ou d’une étoile, au- 
dessus de l’horizon (v. note YII). Quant à l’heure qu’il est au 
même instant, à Paris, sous le premier méridien, nous avons 
indiqué (n° 74) l’emploi des chronomètres qu’on emporte avec 
soi dans le voyage. Mais ces utiles instruments peuvent se 
déranger pendant une longue traversée; et c’est alors que l’ob­
servation de l’éclipse d’un satellite de Jupiter devient très- 
précieuse. En effet, cette éclipse (émersion ou immersion) est 
un phénomène dont l’apparition ne dépend pas de la position 
de l’observateur sur la terre. Si elle est visible au lieu A, on 
peut être assuré qu’elle a lieu, au même instant, pour l’obser­
vateur placé sous le premier méridien. Or, les tables astrono­
miques, calculées plusieurs années à l ’avance, et consignées 
dans la connaissance des temps, donnent au marin l’heure 
exacte de Paris à laquelle a lieu l’éclipse : comme il peut cal­
culer l ’heure exacte du lieu A où il se trouve, au moment où il 
la voit lui-même, ainsi que nous l’avons dit tout à l ’heure, il 
en conclut la différence des heures, et par suite la longitude 
du point A.

Par exemple, l’observateur placé en A voit une éclipse du 
premier satellite ; il calcule, à ce moment, l’heure qu'il est en 
ce lieu, et trouve 9A 13m 24*. Il ouvreles tables astronomiques, 
et trouve que le même phénomène a lieu à Paris à l l A2om12!. 
On compte donc ces deux heures différentes au lieu A et à 
Paris, au même instant physique. Leur différence, 2A 11m 48s, 
est la mesure de la longitude de A; d’ailleurs cette longitude 
est occidentale, puisque l’heure est moindre en A qu’à Paris.

422. U sage des éclipses de lune, des distances de la lune 
aux étoiles, des occultations, etc. — On comprend que les

292 LIVRE V. —  LES PLANÈTES ET LES COMÈTES.



éclipses de lune, qui sont aussi indépendantes delà position de 
l’observateur, peuvent servir au même usage; mais elles sont 
rares, et par suite peu utiles. Celles des satellites de Jupiter 
exigent de forts grossissements, qui les rendent difficiles à 
observer. On a donc cherché une autre méthode plus facile­
ment applicable. Or la lune, ayant un mouvement rapide, se 
déplace à chaque instant parmi les planèteset les étoiles; et sa 
distance angulaire à ces astres peut servir de signal céleste. 
La Connaissance des temps contient, pour chaque jour de cha­
que année, les distances angulaires de la lune au soleil, aux 
planètes principales et à certaines étoiles, calculées de trois 
heures en trois heures (temps moyen de Paris), et réduites au 
centre de la terre par la correction de la parallaxe. Si donc le 
marin, placé en A, observe la distance angulaire de la lune au 
soleil, ou à une étoile, à un instant donné, dont il calcule 
l’heure, il trouvera dans les tables, ou il obtiendra, par une 
proportion, l’heure de Paris à laquelle la distance était la 
même, c’est-à-dire l’heure au même instant physique, et il en 
conclura la longitude. Seulement, il sera obligé de faire un 
calcul de parallaxe pour rapporter la distance mesurée au 
centre de la terre : ce qu’il ne pourra faire qu’approximative- 
ment, puisque ce calcul suppose la connaissance à priori de 
la longitude cherchée.

Les éclipses de soleil, les occultations d’étoiles, de planètes, 
par la lune sont encore des signaux dont on peut faire usage 
dans ce problème, d’une manière analogue.

Terminons en disant qu’on peut craindre, en employant 
ces méthodes, une erreur de plusieurs minutes sur la longi­
tude.
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CHAPITRE VI

DES COMÈTES.

Noyau, chevelure, queue. — Petitesse de la masse des comètes. — Nature de 
leurs orbites. — Comètes périodiques: comète de Halley ; comète de Biéla, 
son dédoublement.

Î 9 4  LIVRE V. —  LES PLANÈTES ET LES COMÈTES.

§ I. — M o u v e m e n t  d e s  c o m è t e s ; s.e u r  a s p e c t .

i- .. j j . i i v j t n j  , . 111**1 a /  j  £  i o  w i J i i ; .  .

425. Mouvement des comètes autour du soleil. —  Les comè­
tes sont, comme les planètes, des astres qui ont un mouve­
ment propre à travers les étoiles. On constate l’existence de ce 
mouvement, comme on l’a fait pour les planètes (n° 337) : on 
démontre que l’orbite de chacune d’elles est plane, et l’on 
détermine la position de la ligne des nœuds par les mêmes 
méthodes (note XXIX); on calcule enfin de la môme manière 
les coordonnées polaires de l’astre, rapportées au centre du 
soleil comme pôle; et l’on reconnaît ainsi qu’il obéit aux lois 
de Képler (même note).

424. Différences entre leurs mouvements et ceux des pla­
nètes. — Cependant les comètes se distinguent des planètes 
sous plusieurs rapports. Tandis que les orbites des planètes 
sont des ellipses à peu près circulaires, celles des comètes sont 
des ellipses excessivement allongées, dont le centre du soleil 
occupe un des foyers. Tandis que les plans des orbes plané­
taires sont fort peu inclinés, en général, sur celui de l’éclip­
tique, ceux des comètes admettent toutes les inclinaisons pos­
sibles. Enfin, tandis que le mouvement de chaque planète est 
direct, on peut citer à peu près la moitié des comètes obser­
vées dont le mouvement est rétrograde.

42o. É léments paraboliques. — Les comètes ne sont visibles 
que pendant une très-petite fraction du temps de leur révolu­
tion; il faut qu’elles soient assez voisines du soleil pour que 
leur éclat soit sensible pour nous : elles cessent d’être aper­
çues dès que leur distance au soleil devient plus grande. Comme
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leur orbite est très-allongée, on peut considérer l’arc qu’elles 
décrivent dans le voisinage du périhélie comme un arc de pa­
rabole. Le problème ne présente plus ainsi que cinq éléments 
à déterminer. Ce sont : 1° la longitude du nœud ascendant ; 
2° l'inclinaison du plan de l’orbite sur celui de l’écliptique; 
3° la distance périhélie; 4° la longitude du périhélie, ou bien 
l’angle que l’axe de la parabole fait avec la ligne des nœuds; 
3° l'époque du passage au périhélie. Trois observations suffi­
sent pour calculer ces éléments paraboliques; mais les autres 
observations de l’astre fournissent des équations de conditions, 
qui servent à obtenir des déterminations plus exactes. On doit 
d’ailleurs indiquer le sens du mouvement.

426. Noyau, chevelure, queue des comètes. — Ce n’est pas 
seulement par leurs éléments astronomiques que les comètes 
se distinguent des planètes, c’est encore par leur aspect. Une 
comète, en effet, n’a pas la forme géométrique invariable des 
autres corps du système solaire. Lorsqu’elle apparaît à nos 
yeux à une assez grande distance du soleil, elle ne présente 
qu’une nébulosité vague, au centre de laquelle on distingue 
une partie plus brillante : elle ressemble alors à un corps so­
lide entouré d’une volumineuse atmosphère. On a donné, en 
conséquence, le nom de noyau à la partie centrale, et celui de 
chevelure à la nébulosité qui l’enveloppe. Mais, si l’on examine 
l’astre avec un fort grossissement, on reconnaît que le noyau 
n’est pas, en général, plus solide que le reste de la comète ; 
car on peut souvent apercevoir les éLoiles à travers son épais­
seur. 11 faut donc rejeter toute idée de solidité pour le noyau, 
et n’y voir le plus ordinairement qu’une nébulosité plus con­
densée que la partie extérieure.

A mesure que la comète se rapproche du soleil, son éclat 
augmente, mais sa forme s’altère ; la nébulosité s’allonge, et 
il se forme une queue qui atteint quelquefois des dimensions 
gitantesques. Cette queue est toujours dirigée à l’opposé du 
soleil; elle suit l’astre, en l’abandonnant en partie. Puis, lors­
que la comète, après son passage au périhélie, va s’éloignant 
rapidement du soleil, la queue, que la chaleur solaire déve­
loppe souvent outre mesure, la précède sur son orbite, et les



phénomènes décrits plus haut se reproduisent en sens in­
verse, l’éclat diminue, et bientôt l’astre disparaît à nos yeux.

4 2 7 .  A spect variable des comètes. — Rien n’est plus va­
riable que l’aspect des comètes. Les unes n’ont pas de queue, 
les autres ont des queues de soixante millions de lieues de lon­
gueur; certaines queues sont rectilignes, d’autres sont recour­
bées comme un sabre turc; celles-ci ont partout une largeur 
uniforme, celles-là s’élargissent en forme d’éventail. Leur 
épaisseur atteint plusieurs millions de lieues; mais ce qu’il y 
a de remarquable, c’est que la lumière les traverse sans dévia­
tion, sans affaiblissement sensible. La matière dont elles sont 
composées est donc d’une ténuité dont nous ne saurions nous 
faire une idée; elle est beaucoup moins dense que la plus lé­
gère fumée, que la brume la plus fine. Nous ignorons complè­
tement la nature de ces corps étranges.

4 2 8 .  P etitesse de la masse d’une comète. — Lorsqu’une co­
mète passe dans le voisinage d'une planète, elle ne produit, 
par son attraction, aucune perturbation, aucun dérangement 
appréciable dans la marche de cette planète, ni même dans 
celle de ses satellites. Au contraire, la planète et ses satellites 
ont une influence énorme sur le mouvement de la comète ; ils 
déforment son orbite, et altèrent considérablement ses élé­
ments. Il faut conclure de là que la masse des comètes est 
extrêmement faible, puisque son action n’est pas assez grande 
pour dévier de sa marche le plus petit satellite d’une manière 
sensible.

4 2 9 .  N ombre des comètes ; improbabilité de leur rencontre 
avec la terre . — Le nombre des comètes paraît illimité, les 
catalogues contiennent les éléments de 800 de ces astres; 
d’autres, en plus grand nombre, ont été vues à diverses épo­
ques, sans que leur marche ait été soumise au calcul. Chaque 
jour on découvre de nouvelles comètes, à l’aide des téles­
copes; et l’on détermine avec soin leurs éléments.

Ces astres ont autrefois jeté l’effroi parmi les hommes : en 
voyant subitement apparaître un de ces corps si différents des- 
autres mondes de notre système, en réfléchissant à la diver­
sité de leurs mouvements, on se demandait avec anxiété si
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l’un deux ne pourrait pas rencontrer la terre dans sa course 
vagabonde, et quels seraient les effets d’une pareille rencon­
tre. Voici quelques remarques de Laplace à ce sujet :

« Ce choc, quoique possible, est si peu vraisemblable dans 
« le cours d’un siècle, il faudrait un hasard si extraordinaire, 
« pour la rencontre de deux corps aussi petits relativement à 
« l’immensité de l’espace dans lequel ils se meuvent, que l’on 
« ne peut concevoir à cet égard aucune crainte raisonnable. 
« Cependant la petite probabilité d’une pareille rencontre 
« peut, en s’accumulant pendant une longue suite de siècles, 
« devenir très-grande. Il est facile de se représenter les effets 
« de ce choc sur la terre. L’axe et le mouvement de rotation 
« changés; les mers abandonnant leur ancienne position pour 
« se précipiter vers le nouvel équateur ; une grande partie des 
« hommes et des animaux noyés dans ce déluge universel, ou 
« détruits par la violente secousse imprimée au globe terres- 
« tre; des espèces entières anéanties; tous les monuments 
« de l’industrie humaine renversés, tels sont les désastres que 
« le choc d’une comète a dû produire, si sa masse a été com- 
« parableà celle de la terre... Je le répète, on doit être plei- 
« nement rassuré sur un aussi terrible événement pendant le 
« court intervalle de la vie: d’autant plus qu’il paraît que les
« masses des comètes sont d’une petitesse extrême..... Mais
« l’homme est tellement disposé à recevoir l’impression de la 
« crainte, que l’on a vu, en 1773, la plus vive frayeur se ré- 
« pandre dans Paris, et de là se communiquer à toute la 
« France, sur la simple annonce d’un mémoire dans lequel 
«Lalande déterminait celles des comètes observées qui peu- 
« vent le plus approcher de la terre : tant il est vrai que les 
« erreurs, les superstitions, les vaines terreurs, et tous les 
« maux qu’entraîne l’ignorance se reproduiraient prompte- 
« ment, si la lumière des sciences venait à s’éteindre 1 » (Expo­
sition du système du monde, liv. IV, chap. iv.)

Les observations modernes ont prouvé que la masse des 
comètes est encore plus petite que ne le supposait Laplace : 
aucun choc n’est donc à craindre. Si la terre rencontrait 
l’une d’elles, elle la traverserait probablement sans s’en aper­



cevoir. Le seul accident que Ton pourrait redouter dans cette 
occurrence serait l’introduction, dans notreatmosphère, d’une 
partie de la matière cométaire, dont l’action délétère sur nos 
organes produirait peut-être des maladies mortelles.

§ II. — Com ètes pé m o d iq c e s .

450. D ifficultés pour m é d ir e  et pour vérifier  le retour 
d’une comète. — On donne le nom de comètes périodiques 5 
celles dont le calcul permet de prédire le retour. Il semble, au 
premier abord, que la courbe décrite par une comète n’est pas 
plus difficile à déterminer que celle d’une planète. Mais si 
l’on considère que la comète ne peut être observée que pen­
dant une très-petite partie de sa révolution, on comprend que 
le petit arc qu’elle parcourt pendant ce temps ne peut donner 
que fort imparfaitement les éléments de son orbite. Si l’on se 
rappelle, en outre, que l’astre peut être considérablement 
dévié de sa marche calculée par les attractions qu’exercent 
sur lui les planètes inconnues près desquelles il passe avant de 
revenir au périhélie, on reconnaît que ces calculs, exacts avant 
les perturbations qui se sont produites, ne peuvent fournir le 
mouvement ultérieur de la planète. Aussi, lorsqu’une comète 
déjà observée revient dans les régions où nous pouvons l’aper­
cevoir, ses éléments ont pu être tellement modifiés pendant 
la durée de sa course invisible, qu’ils sont souvent méconnais­
sables; et l’astronome prend alors pour une comète nouvelle 
l’astre dont le mouvement s’accorde si peu avec celui qu’il 
avait lors de sa précédente apparition. Son aspect ne saurait 
d’ailleurs fournir un moyen de contrôle plus assuré ; car cet 
aspect est souvent aussi variable que les éléments de son or­
bite. On conçoit donc aisément, d’après les considérations 
qui précèdent, pourquoi, sur le nombre considérable des co­
mètes observées, il n’en est guère qu’une dizaine dent on ait 
pu prédire et vérifier le retour.

Pour procéder à cette recherche, les astronomes ne peuvent 
se servir que des éléments paraboliques de l’astre et du sens 
de son mouvement. Lorsqu’une comète nouvelle est signalée,
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ils s’empressent de calculer ses éléments et de les comparer 
à ceux qui sont consignés au catalogue : s’ils trouvent, parmi 
les comètes observées antérieurement, un astre qui ait suivi à 
peu près la même ligne, ils en concluent que ces deux astres 
n’en forment qu’un seul ; et ils prennent l’intervalle de temps 
compris entre les deux apparitions pour valeur de la révolu­
tion, ou pour un multiple de cette révolution. Us peuvent alors 
annoncer l’époque de la prochaine apparition avec quelques 
chances de succès; mais ils sont, de temps à autre, trompés 
dans leur espoir.

Yoici quelques détails sur les plus célèbres comètes pério­
diques.

451. Comète de H alley. — Lapremiêre et la plus remar­
quante de ces comètes est celle qui porte le nom de Halley. Ce 
grand astronome, contemporain et ami de Newlon, la vit 
en 1682, et détermina ses éléments paraboliques d’après les 
observations de La Hire, de Picard, d'Hévélius et de Flam- 
steed. Il appliqua les mêmes calculs aux observations d’une 
comète de 1607, faites par Kepler et Longomonlanus, et il lui 
trouva à peu près les mûmes éléments. Une autre observation 
de comète, faite en 1531 par Apian, fui fournit encore des ré­
sultats analogues. Il lui parut dès lors évident que les trois 
comètes n’étaient qu’un seul et même astre, dont la révolution 
s’exécutait dans une période d’environ 76 ans. Il se hasarda, 
en conséquence, à prédire son retour pour la fin de 1758, ou 
pour le commencement de 1759. Les astronomes la cherchè­
rent dès l’année 1757 ; mais Clairaut, calculant les perturbations 
que son mouvement devait éprouver par l’action de Jupiter et 
de Saturne, annonça, le 15 novembre 1758, à l’Académie des 
Sciences, que son passage au périhélie serait retardé de 
618 jours, et qu’il n’aurait lieu qu’au milieu d’avril 1759. Il 
ajouta toutefois, que «les petites quantités, qu’il avaitnégli- 
«gées, dans ses approximations, pouvaient avancer ou reculer 
« ce terme d’un mois ; et que d’ailleurs un corps qui passe dans 
« des régions ausiy éloignées, et qui échappe à nos yeux pen- 
« dant des intervalles de temps aussi longs, pourrait être sou- 
« mis à des forces totalement inconnues, telles que l’action des



a autres comptes, ou môme de quelque planète, toujours trop 
« distante du soleil pour être jamais aperçue. » La comète re­
vint au périhélie le 12 mars 1759, dans les limites fixées par 
Clairaut. Son dernier retour a eu lieu en 1835. MM. Damoi­
seau et de Pontécoulant calculèrent d’avance, chacun de son 
côté, l’époque du passage, en tenant compte de l’action des 
masses plus exactement connues de Jupiter et de Saturne, et 
aussi de l’action d’Uranus, dont l'existence était inconnue au 
temps de Clairaut. Ils obtinrent des résultats fort remarqua­
bles ; car le premier ne se trompa que de 12 jours, et le se­
cond de 3 jours; erreur bien faible, si l’on songe qu’il s’agil 
d’une période de 76 ans.

Voici le tableau des éléments de cette comète, à ses di­
verses apparitions :
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DATE
DU PASSAGE

au

LONGITUDE 
du uœud

A SC EN D A N T.

ZO
tn
<Z
3U

LONGITUDE
du

P É R IH É L IE .

DISTANCE

P É R IIIÉ L IE .

SENS
du

M OUVEM ENT.

“

25 août 1531 43° 30' 17° 0' 301-12' 0,580 rétrograde.
2G octob. 1007 48 40 17 12 301 38 0,588 —

14 sept. 1682 51 11 17 45 301 56 0,583 —
12 mars 17 69 53 50 17 37 303 10 0,585 _
15 nov. 1835 55 10 17 45 304 32 0,587 —

La comète de Halley avait paru en 1006 ; elle semblait 
quatre fois plus grande que Vénus, et jetait le quart de la 
lumière de la lune. C’est elle encore qui, en 1-456, passa très- 
près de la terre : sa queue occupait 60 degrés du ciel, et avait 
la forme d’un grand sabre. Cette longue queue répandit la 
terreur dans l’Europe, déjà consternée par la rapidité des 
succès des Turcs, qui venaient de renverser le Bas-Empire. 
Mais lors deses dernières apparitions, elle n’a pas présenté les 
mêmes dimensions; en 1835, elle a passé inaperçue, et elle 
n’a guère éveillé que l’intérêt des astronomes et des savants.

452. Comète d’E ncke. — La seconde comète périodique est 
celle dont M. Encke a calculé le retour, et qui porte son nom.



C’est en 1819 qu’il en a déterminé les éléments : on l’avait déjà 
observée quatre fois, en 1786, en 1795, en 1805 et en 1818. Sa 
révolution est de 1211 jours ou 3 ans £ environ : c’est pour­
quoi cette comète est dite à courte période. Elle se meut, 
dans le sens direct, sur une ellipse dont le plan est incliné de 
13 degrés sur l’écliptique; son excentricité est de 0,849; le 
périhélie tombe dans l’orbite de Mercure, l’aphélie près de 
l’orbite de Jupiter. Elle n’a pas de queue ; elle a été souvent 
observée. Elle a reparu en 1865.

4 5 5 . Comète de B ié l a . — La troisième comète périodique a 
été aperçue, d’abord à Johannisberg par M. Biéla, capitaine 
autrichien, le 27 février 1826, et 10 jours après, à Marseille, 
par M. Gambard. Ce fut ce dernier observateur qui reconnut 
qu’elle avait déjà été aperçue en 1805 et en 1772. Pour décou­
vrir la durée de sa révolution, il fallut passer des éléments 
paraboliques aux éléments elliptiques ; on reconnut ainsi que 
cette durée est de 6 ans f. Elle se meut, dans le sens direct, 
sur une ellipse inclinée de 13 degrés sur l’écliptique : son 
excentricité est de 0,750. Elle n’a pas de noyau. Elle a été obser­
vée en 1832, en 1846, en 1852 et en 1859. Par une coïncidence 
singulière, son orbite coupe le plan de l’écliptique, à peu près 
à la distance qui nous sépare du soleil. Si la terre s’était trou­
vée, en 1832, au nœud de la comète, lorsque celle-ci l’a tra­
versé, la rencontre se serait produite; mais la terre était alors 
assez éloignée de ce point ; et depuis cette époque, les per­
turbations qu’ont subies ses éléments ont fait disparaître 
toute chance de collision, en écartant les deux orbites l’une 
de l’autre.

454 . D édoublement de la comète de B iéla . — La comète de 
Biéla a présenté un singulier phénomène à son apparition de 
1846 : elle s’est dédoublée, c’est-à-dire qu’on vit deux comètes 
semblables, très-voisines l’une de l’autre, sans communication 
apparente, et décrivant sensiblement l’orbite assignée à la 
comète primitive. Le dédoublement a persisté aux dernières 
apparitions en 1852 et en 1859. On ignore entièrement la cause 
de ce phénomène sans exemple.

455. Comète de F ay e . — M . Faye a découvert à Paris, en
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1843, une comète dont il a calculé les éléments. Sa révolution 
est de 7 ans 3 mois environ; elle a été revue en 4851, 1858 
et en 1865. Son mouvement est direct, et son inclinaison de 
11 degrés.

Telles sont lescomètes dontla périodicité est certaine, puis­
qu’on a déjà vérifié leur retour. Il en est quelques autres que 
l’on croit périodiques ; mais il faut attendre leur réapparition 
pour constater l’accord du calcul et de l’observation. Ainsi 
Olbers a déterminé les éléments elliptiques d’une comète qui 
parut en 1815, et il a assigné à sa révolution une période de 
75 ans; on ne pourra confirmer ce résultat qu’en 1889, épo­
que de son premier retour.

456 . Comète de 1843. — Une comète fort remarquable parut 
en mars 1843. Elle avait passé au périhélie le 27 février ; elle 
avait une queue dont la longueur dépassait 60 millions de 
lieues, et dont la largeur uniforme se détachait nettement, 
comme un mince filet blanc, sur le fond du ciel. Sa distance 
périhélie n’est que 0,005; elle a dû, en conséquence, passer 
fort près de la surface du soleil, et sa vitesse, à cette époque, 
devait être considérable. On lui assigne une révolution de 
447 ans.

457. Comète de 4770. — Une autre comète, observée en 
4770, fut calculée par Lexel, qui trouva pour sa révolution une 
durée de 5 ans *. On devait s’attendre, en conséquence, à re­
voir souvent cette comète à courte période ; et, cependant, elle 
ne revint pas aux époques assignées par l’astronome. On de­
vait aussi la reconnaître pour une de celles qui avaient été 
observées antérieurement; et cependant les catalogues n’en 
contenaient aucune ayant les mêmes éléments. Pour expli­
quer ce double phénomène, Lexel remarqua qu’en 1707,-la 
comète avait dû s’approcher très-près de Jupiter et subir 
l’attraction de la puissante planète; il montra que l’effet pro­
duit avait été de diminuer considérablement la distance péri­
hélie de la comète, et rendre celle-ci visible en 1770, d’in­
visible qu’elle était auparavant. 11 calcula sonretourpour 1776; 
mais les rayons du soleil empêchèrent de l’apercevoir. Puis 
il constata qu’en 1779 une nouvelle attraction de Jupiter avait
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modifié sa distance périhélie en sens contraire, au point de la 
rendre de nouveau invisible. On a quelque raison de suppo­
ser que ia comète de M. Faye, qui a passé fort près de Jupi­
ter, n’est autre que la comète perdue depuis 1770. Cette co­
mète est une de celles qui se sont le plus rapprochées de 
la terre : sa distance périgée n’était que 6 fois ‘ la distance de 
la lune, ou 400 rayons terrestres.

458, Co m è t e d eNew ton . —CitonsencorelacomèledelG80, 
dont Newton a fait un sujet de recherches, et à laquelle il 
attribua une révolution de 57o ans : ce serait, suivant lui, la 
même comète qui aurait apparu en 1106, en 531 après J.-C., 
puis 34 ans, 619 ans, etc., avant J.-C. Cette comète, achevant 
ainsi 7 révolutions en 4028 ans, a dû passer près de la terre 
2349 ans avant J.-C., c’est-à-dire vers l’époque à laquelle la 
Genèse place le déluge universel.

459 . Comète de 1811. — Nous ne dirons qu’un mot de la 
comète de 4811. Son noyau avait un rayon d’environ 1000 
lieues; à peine visible en avril et en mai, avant son passage 
au périhélie, elle disparut ensuite, pour quelque temps, dans 
les rayons du soleil ; puis elle reparut à la fin d'août, avec un 
éclat remarquable : nul ne pouvait reconnaître, dans le bril­
lant météore des nuits de septembre, l’astre pâle et terne qui 
avait à peine occupé l’attention quelques mois auparavant. 
Loin d’être pour les hommes une cause d’effroi, son appari­
tion fut saluée avec joie par nos pères, qui attribuèrent à son 
heureuse influence les abondantes récoltes de cette année. 
Mais cette opinion n’était fondée sur aucune donnée scienti­
fique : car un astre de cette nature ne nous envoie que des 
quantités de chaleur trop faibles pour produire un effet ap­
préciable sur la température du globe; et celui qui parut 
en 1811 fut aussi étranger à la qualité du vin de la comète, que 
ses devanciers le furent autrefois aux sinistres dont on les 
croyait les avant-coureurs.

440. Comète de m. Donati. — Depuis quelque temps on dé­
couvre chaque année un assez grand nombre de comètes nou­
velles; mais presque toutes sont et restent invisibles à l’œil 
nu, pendant toute la durée de leur révolution, et elles n’inlé-
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ressent que les astronomes. Cependant, il arrive parfois que 
l’un de ces astres présente des dimensions assez considérables, 
et se rapproche assez du soleil et de la terre pour devenir vi­
sible. C’est ainsi qu’en 1858, une comète remarquable fut 
découverte le 2 juin, à Florence, par M. Donati, dans le champ 
de son télescope. Invisible pendant trois mois à la vue simple, 
elle commença, le 3 septembre, .à briller à l’œil nu dans la 
constellation de la Grande-Ourse ; son éclat ne cessa d’aug­
menter rapidement pendant tout le mois, à ce point de de­
venir supérieur à la première grandeur des étoiles ; et l’on vit 
se développer peu à peu une queue gigantesque, légèrement 
courbe, s’épanouissant à partir du noyau, et dont la longueur 
atteignit 40 degrés (20 millions de lieues) dans les premiers 
jours d’octobre. Son noyau, dont le diamètre était de 4 ou 
5 secondes, passa à cette époque très-près d’Àrcturus, sans 
diminuer son éclat; il était entouré de plusieurs auréoles d’in­
tensités diverses et variables. Comme la comète de 18H, la 
comète nouvelle est apparue dans une année très-féconde; et 
cette coïncidence ne contribuera pas à diminuer dans nos 
campagnes le préjugé qui s’attache à l’heureuse influence de 
ces astres sur les biens de la terre.
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CHAPITRE ADDITIONNEL

DES MARÉES.

Phénomène des marées. — Flux et reflux. — Haute et basse mer. — Cir­
constances principales du phénomène. — Sa période. — Les marées sont 
dues aux actions combinées de la lune et du soleil. — Marées des syzygies 
et des quadratures.

441. — Nous avons cherché à montrer, dans le cours de 
ces leçons, comment l’observateur a pu, en étudiant le mou­
vement diurne et le mouvement propre apparent du soleil, 
reconnaître les mouvements réels de la terre, et comment il 
s’est élevé ensuite aux lois des mouvements planétaires, et 
de là au principe général de la gravitation universelle. La dé­
couverte de ce principe a permis aux géomètres d’expliquer 
danstous leurs détails tous les phénomènes célestes, et môme 
d’en prévoir quelques-uns dont ils n’avaient pas encore con­
staté l ’existence. Notre but n’est pas de développer ici les con­
séquences innombrables de cette grande et belle loi; nous 
franchirions ainsi les limites d’un ouvrage élémentaire. Nous 
nous bornerons à exposer les principales circonstances du 
phénomène des marées; et nous montrerons comment le prin­
cipe de l’attraction universelle rend compte de ces mouve­
ments oscillatoires avec une admirable précision.

§ I. —  D escription d c  p h é n o m è n e  de s m a r é e s

442 . F lux et reflux : haute et  basse mer. — C’est un 
spectacle vraiment étrange, dit Laplace, que celui que pré­
sente, dans un temps calme et par un ciel serein, la vive agita­
tion de cette grande masse liquide dont les flots viennent se 
briser avec impétuosité contre les rivages. Deux fois par jour, 
ou, plus exactement, deux fois en 24* 50"* 28* environ, la mer 
s’élève et s’abaisse au delà d’une certaine hauteur moyenne.

COSM. G. 20
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Ainsi, deux fois, dans cet intervalle, elle atteint sa hauteur 
maximum ; on dit alors qu’elle est haute ou pleine ; deux fois 
elle atteint sa hauteur minimum, et l’on dit qu’elle est basse. 
Lorsqu’elle monte, elle envahit les rivages, elle refoule l’eau 
des fleuves en leur donnant un cours opposé : c’est le flux ou 
le flot. Lorsqu’elle descend, elle abandonne les rivages jusqu’à 
une assez grande distance : c’est le reflux ou 1 a jusant.

-443. Période des marées. — L’intervalle de*deux pleines 
mers consécutives est de 12A 25m 14*. Le moment de la basse mer 
sépare cette durée en deux parties inégales : à Brest etàBou- 
logne, la mer emploie iG minutes de plus à monter qu’à 
descendre; au Havre, la différence est de 2A 8m. La période 
complète, qui comprend deux pleines mers et deux basses 
mers, est précisément égale à l’intervalle de temps compris 
entre deux retours consécutifs de la lune au méridien supé­
rieur.

4 4 4 .  Variation de la hauteur avec les phases de la 
lune. — La hauteur de la pleine mer varie chaque jour : elle 
est la plus grande vers l’époque des syzygies, et la plus petite 
vers le temps des quadratures. Mais la plus grande hauteur n’a 
pas lieu au moment de la syzygie ; elle n’a lieu que 36 heures 
après. Ainsi, si la syzygie a lieu au moment d’une pleine mer, 
la troisième marée qui la suit est la plus grande; c’est aussi 
36 heures après une quadrature que la marée est la plus 
faible.

4 4 3 .  Marée totale. — Plus la mer s’élève lorsqu’elle est 
pleine, plus elle descend dans la basse mer suivante. On 
nomme marée totale la demi-somme des hauteurs de deux 
pleines mers consécutives au-dessus de la basse mer inter­
médiaire. La marée totale atteint, en moyenne, à Brest, 
6m, 2490 dans les syzygies, et 3m,0990 seulement dans les qua­
dratures.

4 4 6 .  Variation de la hauteur avec les distances de la lune 
et du soleil. — La grandeur de la marée totale varie avec la 
distance de la lune à la terre : elle augmente quand la lune se 
rapproche, elle diminue quand la lune s’éloigne. La varia­
tion de cette distance au-dessus ou au-dessous de sa valeur
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moyenne esl d’environ ^  de cette valeur; et la variation cor­
respondante de la marée totale, dans les syzygies, est 55 de sa 
valeur moyenne; elle est ainsi d’environ 0m, 883 à Brest; de 
sorte que l’elTet du changement de distance de la lune est de 
1”‘, 7üG sur les marées totales de ce port.

La variation de la distance du soleil à la terre exerce aussi 
une influence sur les marées, mais elle est bien moins sensi­
ble. Toutes choses égales d’ailleurs, les marées des syzygies 
sont plus grandes, et celles des quadratures plus petites, en 
hiver qu’en été.

447 . Variation avec les déclinaisons des deux a stres. —  
Les marées des syzygies sont d’autant plus fortes, et celles des 
quadratures d’autant plus faibles, que la lune et le soleil sont 
plus voisins de l’équateur. A Brest, la marée totale de lasyzy- 
gie, dans les équinoxes, est plus forte que dans les solstices, 
de 0m, 73 environ ; la marée totale des quadratures est plus 
petite de la même quantité dans les mêmes circonstances.

448 . Établissement du port. — Aux équinoxes, quand la 
lune nouvelle ou pleine se trouve à sa distance moyenne de 
la terre, la pleine mer n’arrive pas au moment même du pas­
sage de l’astre au méridien ; elle suit le moment du minuit 
ou du midi vrai, d’un intervalle de temps qui varie d’un 
port à l’autre, mais qui est constant dans un même port. Ce 
retard est ce qu’on nomme l'établissement du port, parce qu'il 
détermine les heures des marées relatives aux phases de la 
lune. Ainsi à Brest, la pleine mer, le jour de la syzygie, a 
lieu 3* 46m après midi ou minuit ; l’établissement du port est 
3'* 46m. 11 est 3* 32m à Lorient, 5* 15m à Morlaix, B* 10m à 
Saint-Malo, 7* 38m à Cherbourg, 9* 53m au Havre, l l * 8”‘ à 
Dieppe, 11* 49m à Calais, 12* 13’" à Dunkerque. 11 n’est que 
20m à Ostende.

440. R etard journalier des marées. — Le retard journalier 
des marées est de £0 " 28' en moyenne, comme nous l’avons 
dit; mais il varie avec les phases de la lune, avec les distances 
à la terre et les déclinaisons de la lune et du soleil.

Telles sont les principales circonstances du phénomène; il 
nous reste maintenant à en expliquer la cause.
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§ II. —  C a u se s de s ïiarées.

450. — Les faits que nous venons d’exposer suffisent pour 
montrer qu’il existe une intime relation entre les oscillations 
de la mer et le mouvement de la lune. Il est donc naturel 
d’attribuer à cet astre la plus grande part dans le phénomène : 
examinons comment l’attraction de notre satellite peut en 
rendre compte.

451. F o r m e  q u e  d o i t  p r e n d r e  l a m e r s o u s  l ’a c t i o n d e l a  l u n e . 

— Nous supposerons la terre sphérique, et complètement 
recouverte par la mer; et, pour étudier l’action de la lune, 
nous supposerons d’abord les deux astres immobiles. Soit T

globe étaient également attirées vers le point L, elles obéi­
raient, en commun, à ces attractions, et l’équilibre des eaux 
ne serait pas troublé. Mais il n’en est pas ainsi. On démontre, 
en mécanique, que l’attraction exercée par un corps sur un 
ccrps solide sphérique extérieur est exactement la même que 
si la masse du corps attiré était condensée à son centre : ainsi 
l'action de la lune sur la partie solide de la terre est la même 
que si la masse de la terre était tout entière au point T. Mais 
une molécule d’eau a, située sur la droite TL, est plus voisine 
de la lune que le centre T, de toute la longueur du rayon ter­
restre : elle doit être plus énergiquement atlirée; elle tend 
ainsi à se séparer de la surface de la terre ; mais elle y est re­
tenue par son poids, que cette tendance diminue. De même

la section de la 
terre par le plan
de l’orbite de la 
lune (fig. 123), et
soit L la position 
de cet astre. Si 
toutes les molécu­
les qui composent 
la masse solide et 
liquide de notre
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la molécule a', située sur le prolongement du diamètre LT, 
est plus éloignée de la lune que le point T ; elle est moins 
.fortement attirée : la surface terrestre tend donc à s’en sépa­
rer ; mais la pesanteur de la molécule l’y retient attachée : 
cette force est donc encore diminuée par l’attraction lunaire. 
D’un autre côté, sur le diamètre^perpendiculaire au premier, 
les molécules b et b' subissent très-sensiblement la môme ac­
tion que le centre T. Il faudra donc, pour que l’équilibre existe, 
que l’épaisseur de la masse liquide, dans les régions a et a' où 
la pesanteur est moindre, soit plus considérable qu’en b et b'. 
La mer devra donc prendre la forme, allongée dans le sens 
aa\ qu’indique la figure 123.

452 . Calcul de l a  force qui soulève la m er. — Il est facile 
de calculer la force qui soulève ainsi une molécule d’eau a 
ou a' ; car elle est la différence des deux forces qui agissent 
sur le centre de la terre et sur la molécule. Soient d la dis­
tance TL, r  le rayon terrestre, rn la masse de la lune et f  l’at­
traction de l’unité de masse lunaire à l’unité de distance ; les 
actions de la lune sur le point T et sur le point a sont respec-

, fm fm
tivement, d’après la loi de Newton (n° 348), et et

leur différence est
fm fm fm [d- — (d — r)2]

(d — r)2 ~ ~ d 3 ’ ° U d2(rf — r)2 ’
ou

fm {ïdr — r3) 
d'2 (d —  ?')2

Or r n’est que — ; on peut donc négliger r2 vis-à-vis de 2dr 
GO

au numérateur, et r vis-à-vis de d au dénominateur ; et l’ex-
2 fmi'd 2fmr 

pression devient ^  - , ou .

Ainsi la force qui soulève la molécule a est proportionnelle à
la masse de la lune, et en raison inverse du cube de sa distance
à la terre. On verra de même que la force qui écarte la molé-

, fm fm 2fmr ..
cule a de la surface terrestre çst — — —r-,— -z , ou —rr~ ■er [a -j- r)2 «
est donc la même que celle qui agit en a. La mer prend,
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sous cette action, la forme d’un ellipsoïde allongé vers la 
lune.

455 . E ffets de la rotation de la terre et  du mouvement de 
la lune. — Si la terre et la lune restaient immobiles, comme 
nous l’avons supposé, les eaux prendraient, d’une manière 
permanente, la forme que nous venons de leur assigner, et 
elles resteraient en équilibre. Mais, on le sait, la terre tourne 
sur elle-même, en 24 heures, dans le sens de la tlèche ; et la 
lune, que nous supposons dans le plan de l’équateur, circule 
dans le même sens autour de la terre, en 27 jours -£-• Il résulte 
de ces deux mo.uvements, que la lune paraît décrire, en 
24**50m28% une circonférence entière autour de nous, d’o­
rient en occident (n° 261). Par suite, au bout de6*12m37% elle 
aura décrit 90 degrés, et sera dans la direction T b' ; ce sera 
dans cette direction que l’ellipsoïde sera allongé, et il y 
aura dépression dans la direction perpendiculaire ad. Puis, 
6* 42m37’ plus tard, elle sera revenue au méridien du côté de 
d  ; il y aura de nouveau élévation de la mer en a et a' ; puis il 
y aura une nouvelle dépression en ces points, après un nou­
vel intervalle de 6M2"1 37*. Et enfin, au bout des 24* 50m 28% 
les mêmes phénomènes se reproduiront. Ainsi, comme on le 
comprend aisément, l’intervalle de deux hautes mers consé­
cutives doit être de 12*25m44J ; et c’est ce que l’on observe 
réellement.

454. Action du soleil sur les eaux de la mer. — L’attrac­
tion du soleil doit produire sur les eaux de la mer un effet 
analogue, dont la période est le jour solaire. Mais, quoique la 
masse de cet astre soit beaucoup plus considérable que celle 
de la lune, son action est moins sensible, parce que sa distance 
à la terre est beaucoup plus grande.

On peut calculer aisément le rapport des deux actions, à 
l’aide de la formule du n° 452 ; car, si M estla masse du soleil, 
et si D est sa distance à la terre, son action sur une molécule 

2/Mr
a est - j - : donc le rapport de l’action de la lune à celle

du soleil est
2fm r 2/Mr m D3

d3
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OrM=324570, ctw =  ^ g !  donc ÿ  =  i P™

D 03-180
d =  G0,273r, et D =  23280 / donc — =  ; donc le rap-

1 232803 „ . . . .
P°rt VaUt 32ÂT70X 81.5 X  00^2733 ’ ° U 2’18 enVir0n- 13
marée solaire n’est pas la moitié de la marée lunaire.

4i5o. Actions combinées des deux astres : leurs effets. —  
On explique, en mécanique, comment le mouvement réel 
d’un système, soumis à deux forces, est le mouvement résul­
tant des mouvements partiels que chaque force lui eût impri­
més séparément : donc les deux flux partiels produits par la 
lune et par le soleil se combinent sans se troubler, et c’est de 
cette combinaison que naît le flux qu’on observe dans les 
ports.

Mais comme les périodes des deux phénomènes ne sont pas 
les mêmes, l’instant de la marée solaire n’est pas toujours le 
môme que celui de la marée lunaire. Si, à un certain moment, 
les deux marées coïncident, la marée lunaire suivante retar­
dera sur la marée solaire de l’excès du demi-jour lunaire sur 
le demi-jour solaire, c’est-à-dire de 2om 14\ Ces retards iront 
s’accumulant de jour en jour ; au bout de 7 jours -J- environ, 
ils seront de 6 h e u r e s à  peu près, et la pleine mer lunaire 
coïncidera avec la basse mer solaire, et inversement. Ce sont 
ces différences qui produisent les variations de hauteur des 
marées, suivant les phases de la lune. Ainsi, si le soleil et la 
lune passent ensemble au méridien, leurs actions s’ajoutent, 
puisqu’elles ont lieu dans le même sens : c’est celte concor­
dance qui donne les grandes marées dessyzygies. Si les deux 
astres, au contraire, passent au méridien à 6 heures de dis­
tance, l’un tend à produire une dépression en un point, au 
moment où l’autre tend à y déterminer une élévation; les deux 
actions se contrarient, et se retranchent l ’une de l’autre : le 
résultat est la marée des quadratures, la plus faible de toutes.

D’ailleurs, puisque la marée lunaire l’emporte sur la marée 
solaire, c’est la première qui doit régler principalement la 
marée résultante : ainsi, dans un temps donné, il doit y avoir
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autant de marées qu’il y a de passages de la lune au méridien 
supérieur ou inférieur: c’est ce qu’on observe en effet.

4 o 6 .  Influence de l’étendue de la mer sur i.e phénomène. — 
Plus une mer est vaste, plus les phénomènes des marées 
doivent être sensibles. Car c’est principalement la différence 
des attractions exercées sur les molécules extrêmes de la 
masse fluide, qui produit ici une élévation, là une dépression; 
or, dans une petite étendue, les attractions sont à peu près 
les mêmes sur toutes les molécules, et la variation du niveau 
ordinaire de la mer est presque nulle. C’est ainsi qu’il n’y a 
pas de marées dans la mer Noire, dans la mer Caspienne ; et 
que, dans la Méditerranée elle-même, elles sont fort peu sen­
sibles.

D’ailleurs, les circonstances locales peuvent augmenter 
beaucoup la grandeur des marées : ainsi, la configuration des 
côtes sur lesquelles les eaux se réfléchissent dans leur mou­
vement, le peu de largeur des espaces dans lesquels elles se 
précipitent, etc., peuvent les rendre considérables.

4 3 7 . E ffets de l’attraction lunaire dans les ports : re­
tards; établissement du port. — Si l ’Océan recouvrait partout 
le sphéroïde terrestre à une égale profondeur, s’il n’éprouvait 
aucune résistance dans ses mouvements, chaque marée par­
tielle aurait lieu au moment même où l’astre exerce sa plus 
grande action, c’est-à-dire au moment de son passage au mé­
ridien. Mais il n’en est pas ainsi ; et, pour comprendre par 
quelle cause est produit le retard dans nos ports, imaginons, 
avec Laplace, un large canal communiquant avec la mer, et 
s’étendant au loin dans les terres, sous le méridien de son 
embouchure. Si l’on suppose qu’à cette embouchure, la pleine 
mer lunaire ou solaire ait lieu au moment même du passage 
de l’astre au méridien, il est visible que le mouvement ondu­
latoire se transmettra successivement aux différents point"'du 
canal, et que les heures du flux retarderont d’autant plus que 
ces points seront plus éloignés de l’embouchure. C’est sous ce 
point de vue qu’il faut envisager les marées dans nos ports : 
le flot se forme au milieu de l’Océan, au moment du passage 
de l’astre au méridien; les ondes qu’il produit se propagent
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peu à peu vers les côtes, comme vers, l’extrémité du canal : 
elles arrivent dans les ports, et y déterminent la haute mer, 
un temps plus ou moins long après le passage.

D’après cela, on voit que, si la mer recouvrait partout 
le sphéroïde terrestre, les marées lunaire et solaire au­
raient lieu au moment du passage de leurs astres respectifs 
au méridien ; et, si alors la syzygie arrivait à midi, ce mo­
ment serait celui de la plus grande marée. Mais l’expé­
rience et la théorie prouvent que, si l’attraction des deux 
astres se communique instantanément à la mer, les mou­
vements qui en résultent emploient 36 heures environ à par­
venir dans les ports de France. Ce n’est donc que 36 heures 
après chaque syzygie ou chaque quadrature qu’on y observe 
le maximum ou le minimum des marées composées.

Quant à l’autre retard constant, appelé établissement du 
port, il provient de la configuration des côtes et des localités 
il est souvent très-différent pour deux ports très-voisins.

430. — Nous ne développerons pas en détail chacune des 
conséquences qui résultent de la théorie que nous venons 
d’exposer. Qu’il nous suffise de dire que la théorie de l’attrac­
tion rend compte, avec une précision satisfaisante, des varia­
tions de hauteur correspondantes aux inégalités du mouve­
ment, de la déclinaison et de la distance des deux astres. 
« Cette action du soleil et de la lune sur la mer, dit Laplace, 
« suite nécessaire de l’attraction universelle démontrée par 
« tous les phénomènes célestes, étant confirmée par les phé- 
« nomènes des marées, ne doit laisser aucun doute. Elle est 
« portée maintenant à un tel degré d’évidence, qu’il existe 
« sur cet objet un accord unanime entre les savants instruits 
« de ces phénomènes, et suffisamment versés dans la géomé- 
« trie et dans la mécanique pour en saisir les rapports avec la 
« loi de la pesanteur. »

§ III.  —  I nfluence  d e  i .a lune  sur les  ph én om ènes t e r r e s t r e s .

•4S9. M arées a é r ie n n e s . —  O n  vient de voir que attraction de la  lune est 
la cause principale des grandes oscillations de a mer. 11 est donc naturel de 
penser qu’elle produit quelque effet analogue sur notre atmosphère, et que le
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soleil lui-même n’est pas sans influence sur ses mouvements : on peut sup­
poser qu’il doit y avoir des marées aériennes, et que le maximun d’action a 
lieu aux syzygies, et le minimun aux quadratures. Mais il est fort difficile de 
déterminer, par la théorie, la quantité d’ailleurs très-petite do ces effets.

400. C hangements de t e m p s . — Cette action peut-elle opérer un change­
m en t d e  tem p s?  La nouvelle lune, surtout, peut-elle, suivant l’opinion popu­
laire si répandue, amener un certain état de l’atmosphère, et le conserver 
pendant toute la lunaison ? Avant de répondre à cette question, on pourra 
demander d’abord ce qu’il faut entendre par un changement de temps. Pour 
les uns, ce sera le passage du calme au vent, d’un vent faible à un vent fort, 
d’un ciel serein à un ciel un peu nuageux, etc. ; d’autres exigeront des varia­
tions plus tranchées. On pourra demander aussi quels sont les caractères d’un 
changement de temps ; si une pluie de quelques minutes interrompt le beau 
temps ; si quelques heures d’un ciel serein, séparant des journées pluvieuses 
suffisent pour produire un changement de temps, etc. On voit combien est 
vague le sens que l’on peut attribuer à cette expression.

Si nous mettons de côté la difficulté qui résulte de ces incertitudes, et si 
nous compulsons, avec Bouvard, les registres qui se tiennent depuis plus de 
soixante ans à l’Observatoire de Paris, nous sommes forcés de conclure que 
les phases de la lune n’ont aucun rapport avec les changements de temps, ni 
avec la fréquence ou la quantité de la pluie. C’est là une preuve irrécusable 
et que personne ne saurait contester. Il faut donc considérèr comme un pré­
jugé cette opinion, si généralement accréditée, que les changements de temps ont 
lieu surtout à l’époque de la conjonction, et que l’état de l’atmosphère, qui 
se manifeste au moment de la nouvelle lune, doit se conserver autant que 
dure la lunaison. Il est difficile d’ailleurs de comprendre à priori cette in­
fluence décisive d’une phase de la lune : car, s’il est aisé d’admettre que sou 
attraction, qui, à cette époque, s'ajoute à celle du soleil, produit quelque per­
turbation dans l’état de l’atmosphère, on ne voit pas pourquoi, douze heures 
avant ou après, cette action ne produirait pas un effet absolument opposé.

4G1. A usen ce  d’action  de la lune  sur les  pl a n te s . — Les autres effets 
que l’on attribue à la lune n’ont pas une base plus solide ; et souvent ils sont, 
scientifiquement parlant, tellement inacceptables, que l’on ne peut s’expliquer 
comment ils ont pris crédit. Comment admettre, par exemple, que les arbres 
doivent être coupés pendant le décours de la lune, si l’on veut que le bois soit 
de bonne qualité et se conserve ? que, pour avoir des plantes ou des arbres 
qui s’élèvent et poussent avec vigueur, il faut semer, planter, greffer et tailler 
pendant la lune croissante; mais que, pour avoir des choux ou des laitues 
qui puissent pousser, des fleurs doubles, des arbres à fruits précoces, il faut 
semer, planter et tailler pendant le déclin ? que le vin qui se fait dans deux 
lunes n’est jamais de bonne qualité et reste constamment trouble?

4G2. L une r o u sse . — D’autres opinions reposent sur des faits Trais, pour 
l’explication desquels on fait à tort intervenir la lune. Nous citerons, comme 
exemple, l’influence nuisible que l’on attribue à la lune rousse  sur les phéno-
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mènes de la végétation. On sait que les jardiniers donnent ce nom à la lune 
qui, commençant en avril, devient pleine à la fin de ce mois ou dans le cou­
rant de mai. Ils affirment qu’à cette époque, lorsque le ciel est serein, les 
feuilles, les bourgeons, exposés à la lumière de la lune, roussissent, c’est-à- 
dire se gèlent, quoique le thermomètre se tienne dans l’atmosphère à plusieurs 
degrés au-dessus de zéro ; mais si les nuages interceptent la lumière de l’astre 
et l’empêchent d’arriver jusqu’aux plantes, les mêmes effets n’ont plus lieu 
dans des circonstances de température parfaitement semblables. D’où ils con­
cluent que la lune a une influence frigorifique incontestable. On sera certai­
nement peu disposé à accepter cette opinion, si l’on se rappelle que l’on n’a 
jamais pu constater l’action de notre satellite sur les thermomètres les plus 
délicats. Cependant le fait est vrai, mais la cause est ailleurs. En effet, on sait 
aujourd’hui que, par suite d’un rayonnement rapide, les végétaux peuvent 
acquérir une température inférieure de 7 ou 8 degrés à celle de l’atmosphère 
qui les environne. Une plante peut donc être fortement gelée, quoique l’air se 
soit maintenu constamment à plusieurs degrés au-dessus de zéro. Mais il faut 
pour cela que le ciel soit parfaitement serein : s’il est couvert, la différence 
de température disparaît complètement. On comprend, d’après cela, comment, 
en avril et en mai, la température de l'air n’étant souvent, la nuit, que de 
quelques degrés au-dessus de zéro, le rayonnement, si la lune brille, c’est-à- 
dire si le ciel est serein, peut faire descendre la température des plantes au- 
dessous de zéro et les geler entièrement ; tandis que, si la lune ne brille pas, 
c’est-à-dire si le ciel est couvert, la température des plantes ne descendra pas 
au-dessous de celle de l’atmosphère, et il n’y aura pas de gelée. L’observation 
des jardiniers est donc exacte, mais la conclusion enest fausse : la lumière de 
la lune n’est pour rien dans le fait de la congélation nocturne des végétaux ; 
elle n’est que l’indication d’une atmosphère sereine, et c’est par la pureté du 
ciel que la gelée a lieu.

Nous avons emprunté une grande partie de ces détails à la Notice insérée 
par F. Arago dans l'Annuaire pour l’année 1833. Nous y renverrons nos lec­
teurs : ils y trouveront une discussion longue et approfondie de tous les dic­
tons, de tous les préjugés populaires sur les influences de la lune.
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465. Méthode su iv ie  dans cet ouvrage. — Nous n’avons pas, 
en terminant ces leçons, à justifier la méthode d’exposition 
que nous avons adoptée. Nous avons suivi la marche qui nous 
était tracée d’avance par le programme officiel arrêté pour 
l’enseignement de la cosmographie dans les lycées. Cette mé­
thode, toute rationnelle, est celle qu’ont préférée nos illus­
tres maîtres, les Lalande, les Delambre et les Biot. Elle place 
l’observateur en présence du ciel; elle lui montre les mouve­
ments, apparents ou réels, des astres qui parsèment la voûte 
céleste, et elle lui apprend à en déterminer les lois. Puis lors­
que, entraîné par le témoignage de ses yeux, il se dispose à 
adopter les erreurs des premiers astronomes, elle appelle le 
raisonnement à son aide ; elle dégage peu à peu la réalité des 
apparences; elle accumule les inductions, les analogies, les 
probabilités, les preuves; et elle lui montre enfin le vérita­
ble système du monde tel qu’il lui apparaîtrait, s’il pouvait 
se placer immobile en un point quelconque de l’espace, et 
l’embrasser d’un coup d’œil.

Telle est la méthode que nous avons adoptée dans cet ou­
vrage. Mais, après avoir démontré successivement toutes les 
lois qui régissent les mouvements des corps célestes, il con­
vient de résumer en quelques mots les résultats que nous 
avons obtenus, en plaçant sous les yeux de nos lecteurs le ta­
bleau général du monde solaire.

4 6 4 . T ableau général du monde solaire. — Au centre du 
Système, le soleil tourne sur lui-même d’occident en orient. 
Autour de lui, la terre, sept autres planètes principales, un 
grand nombre de planètes télescopiques se meuvent dans le



môme sens, à des distances différentes, avec des vitesses iné­
gales : ces corps tournent sur eux-mêmes uniformément, 
comme le soleil, d’occident en orient (fig. 124). Les plus gros 
d’entre eux sont, à leur tour, le centre de systèmes, miniatu-
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res du monde solaire; Jupiter, Saturne, Uranus, Neptune, la 
Terre sont accompagnés d’un ou de plusieurs satellites qui 
circulent autour de ces planètes et tournent sur eux-mêmes 
d’occident en orient. Tous ces mouvements sont soumis aux 
mêmes lois : les orbites sont des ellipses1 ; les aires décrites 
sont proportionnelles aux temps; les carrés des temps des 
révolutions sont proportionnels aux cubes des distances au 
soleil ou à la planète; et ces lois sont les conséquences d’une 
loi unique, en vertu de laquelle les corps célestes s’attirent'

(1) Il faut excepter, comme on l’a déjà dit (n« 413), deux des satellites 
d’Uranus.
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proportionnellement à leurs masses et en raison inverse des 
carrés de leurs distances.

Indépendamment de ces éléments invariables, le système 
solaire est traversé dans tous les sens par un grand nombre de 
ces corps immenses qu’on a désignes sous le nom de comè­
tes, qui apparaissent subitement, brillent pendant quelques 
jours, et disparaissent souvent pour ne plus revenir. Obéis­
sant, comme les planètes, à la loi générale del’atlraction uni­
verselle, ils subissent, à cause de la petitesse de leurs mas­
ses, l'influence des corps près desquels ils passent, et ils sont 
enlevés ou rendus au monde solaire par ces actions puis­
santes.

Le nombre de ces astres étranges est sans doute considé­
rable; car, chaque année, on en découvre de nouveaux. Le 
groupe des petites planètes s’enrichit aussi sans cesse, grâce 
aux travaux de quelques astronomes. Et il n’est pas impossi­
ble de prévoir qu’un jour on découvrira peut-être quelque 
planète invisible, dont la présence aux limites de noire monde 
sera accusée par son action sur Neptune, de même que la dé­
couverte de Neptune a été elle-môme la conséquence des per­
turbations d’Uranus. Mais, quels que soient à cet égard les 
secrets de l’avenir, le système solaire, tel que nous le connais­
sons aujourd’hui, n’en forme pas moins un tout complet, 
d’une majestueuse simplicité, admirablement organisé par la 
Providence, et dont la stabilité ne saurait être troublée 
spontanément par le jeu naturel des forces auxquelles il est 
soumis.

La figure 124 représente l’ensemble de ce système : les di­
mensions relatives des orbites y sont reproduites, à l’exception 
de celle de Neptune; seulement nous les avons supposées cir­
culaires, et nous avons projeté leurs plans sur celui de l’é­
cliptique.

-4Gü. I mmensité de l’univehs. — Quelle quesoitl’étendue du 
monde solaire, il n’est qu’un point insensible dans l’immen­
sité de l’espace. Car, si le soleil exerce son influence à des 
distances qui dépassent un milliard de lieues; s’il force à 
tourner autour de lui des corps comme Neptune et certaines
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comètes qui semblent, par leur éloignement, devoir se sous­
traire à son action; par delà les limiles de sa sphère d’attrac­
tion, à des distances que nous ne pouvons ni mesurer ni con­
cevoir, il existe des milliers d'étoiles visibles, qui sont des 
soleils comme le nôtre, lumineux comme lui, aussi éloignés 
les uns des autres qu’ils le sont de nous, indépendants entre 
eux, comme il l’est lui-même de chacun d’eux, et qui peut- 
être sont les centres d’autant de mondes planétaires que nous 
sommes destinés à ne jamais connaître. D’autres étoiles sont 
disséminées avec une telle profusion dans certaines régions 
du ciel, et leurs distances à la terre sont si considérables, 
qu’elles ne produisent sur nos yeux que l’impression d’une 
lumière pâle et laiteuse : ce sont elles qui constituent cette 
immense zone à laquelle on a donné le nom de voie lactée; on 
les compte par millions, lorsqu’on les sépare à l’aide des té­
lescopes.

Mais ce n’est pas tout encore ! Plus de six mille nébuleuses 
sont dispersées dans toutes les directions; quelques-unes 
d’entre elles se résolvent, comme la voie lactée, en amas 
d’étoiles ; presque toutes, constituées peut-être de la même 
manière, mais trop éloignées de nous, résistent au grossisse­
ment des plus puissantes lunettes, et n’olfrentà nos yeux que 
de faibles nuages, blanchâtres, indécomposables : plusieurs 
nous présentent l’aspect d’anneaux circulaires, dont le centre 
est vide.

4 6 6 .H ypothèse sur la constitution de l’univers. — Ce sont 
ces faits qui ont inspiré à d’illustres astronomes de gran­
dioses conjectures sur la constitution de l’univers. Ils ont 
pensé que notre soleil, avec son cortège de planètes et de co­
mètes, est au milieu d’une première agglomération sphérique, 
composée des étoiles brillantes du firmament, et qu’il en est 
lui-même un des éléments ; que cet amas globulaire est en­
touré à une distance considérable par une zone immense, 
formée elle-même de plusieurs millions d’étoiles, et consti­
tuant la voie lactée; enfin, que chaque nébuleuse est une 
voie lactée, aussi riche en étoiles, aussi étendue que la nôtre, 
et qui, vue du point extérieur où nous sommes placés, nous
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apparaît comme un anneau dont le diamètre apparent dépend 
de la distance qui nous en sépare.

On connaît les dimensions de notre système planétaire ; 
elles dépassent mille millions de lieues. Ces dimensions sont 
presque nulles vis-à-vis des distances de notre soleil aux étoiles 
que nous pouvons voir à l’œil nu. Ces distances, à leur tour, 
sont insensibles relativement au diamètre de la voie lactée; et 
ce diamètre lui-même est infiniment petit, si on le compare 
aux distances qui séparent les nébuleuses les unes des autres, 
et la nôtre de chacune d’elles.

Il faut plus de trois ans pour que la lumière émanée de l’é­
toile la plus voisine parvienne à notre œil; il faudrait plusieurs 
siècles pour qu’elle traversât la voie lactée ; il lui faudrait 
sans doute des milliers d’années pour aller d’une nébuleuse 
à une autre. Ainsi les rayons lumineux, ces courriers si rapi­
des, ne nous apportent, suivant l’expression d’Arago, que 
l’histoire très-ancienne de ces mondes éloignés.

467 . R éflexions et  conclusion. — Telles sont les opinions 
brillantes et hardies que quelques astronomes ont fondées sur 
d’imposantes probabilités et sur des généralisations natu­
relles. Et que devient la terre dans ce vaste ensemble ?

« Séduit par les illusions des sens et de l’amour-propre, 
« l’homme s’est regardé longtemps comme le centre du mou- 
« vement des astres ; et son vain orgueil a été puni parles 
a frayeurs qu’ils lui ont inspirées. Enfin plusieurs siècles de 
« travaux ont fait tomber le voile qui lui cachait le système 
« du monde. Alors il s’est vu sur une planète presque imper­
ii ceptible dans le système solaire, dont la vaste étendue n’esl. 
« elle-même qu’un point insensible dans l’immensité de l’es- 
« pace. Les résultats sublimes auxquels cette découverte l’a 
« conduit sont bien propres à le consoler du rang qu’elle as- 
« signe à la terre, en lui montrant sa propre grandeur dans 
« l’extrême petitesse de la base qui lui a servi pour mesurer 
« les cieux (1). » v* »’ \ »

Est-il nécessaire de faire remarquer combien le tableau vé-

(1) Laplace, Exposition du système du monde, liv. V, cliap, vi.
c o s u . G. 21
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ritable que nous venons de tracer l’emporte sur les plus bril­
lantes conceptions de la poésie ancienne? Sans sortir du do­
maine des faits rigoureusement démontrés, est-il possible 
d’imaginer un système plus vaste dans ses proportions, plus 
merveilleux dans ses détails, plus régulier dans ses mouve­
ments, plus simple dans les forces qui le sollicitent? Peut-on 
méconnaître, après l’avoir étudié, la puissance infinie de son 
auteur? Nous nous estimerons heureux si nos élèves, en re­
connaissant avec nous la justesse de cette parole des Écritu­
res : c c e l i  e n a b r a n t  GLOKiAM De i , trouvent, dans la lecture de 
cet ouvrage, quelques nouveaux motifs d’élever leur âme in­
telligente vers le créateur de tant de merveilles !

EXERCICES ET APPLICATIONS.

4G8. — 1° Calculer la relation qui existe entre les vitesses angulaires 
moyennes de deux planètes et leurs distances au soleil (eu supposant les mou­
vements circulaires).

2° Calculer la relation entre les vitesses absolues moyennes et les dis- 
jmces.

3° Connaissant les distances de Mercure, de Vénus et de la Terre au Soleil, 
calculer la digression de Mercure et celle de Vénus.

4° Connaissant les distances de Jupiter et de la Terre au Soleil, calculer 
(fig. 119) l’angle APA' et l’angle ATA', qui mesarent les oscillations de la pro­
jection de Jupiter sur la sphère céleste.

5° Connaissant l’intervalle de temps (42A 28m 48«) qui sépare deux émer­
sions consécutives du premier satellite de Jupiter, lors de l’opposition, calcu­
ler celui qui les sépare lors de la quadrature.

ADDITIONS.

FIN.
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L I V R E  I. -  L E S  É T O I L E S .

NOTE I(n°23,p. 19 ; n°3 36 et suiv., p.26 ; n° 133, p. 103; 
n° 187, p. 142 ; n° 204, p. 138).

Formules pour la transformation des coordonnées 
sphériques.

4GD. Systèmes de coordonnées sphériques. — En astronomie, la con­
ception de la sphère céleste sert à transformer une figure quelconque en une 
figure sphérique, à l’aide des projections perspectives ou coniques. Les dis­
tances des difiérents points de la figure au point pris pour centre ne jouent 
aucun rôle dans ce système de projections ; elles sont remplacées par le rayon 
de la sphère que l’on prend ordinairement pour unité, et les positions rela­
tives de ces points sont déterminées par leurs distances angulaires.

On fixe la position d'un astre sur la sphère céleste en donnant ses deux 
coordonnées sphériques. Les systèmes les plus usités sont formés d’un grand 
cercle et de son pôle.

1° On peut choisir l’horizon et le zénith. Les coordonnées de l’astre sont 
alors son azimut A et sa hauteur ou sa distance zénithale Z ; on les nomme 
cordonnées azimutales. Elles se mesurent au moyen du théodolite.

2» On peut prendre l'équateur et son pôle. Les coordonnées de l’astre sont 
alors son angle horaire H et sa déclinaison (0 : ce sont les coordonnées ho­
raires. On les mesure à l’aide de l'équatorial.

Dans ces deux systèmes, on suppose que la sphère céleste est fixe, et que 
chaque étoile en décrit un parallèle : dans cette hypothèse, l’origine des azi­
muts et des angles horaires est un point fixe (le point sud). Mais si l’on ima­
gine que la sphère céleste tourne en entraînant les étoiles avec elle, l’origine 
n’est plus fixe, et il faut changer le système.

30 On choisit encore Véquateur et son pôle ; mais on substitue l'ascension 
droite JL de l’astre à son angle horaire, en conservant la déclinaison comme 
seconde coordonnée ; ce système est celui des coordonnées équatoriales. Les 
instruments pour les mesurer sont la lunette méridienne et le ceixle mural.
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4» Enfin on peut rapporter la position d’un astre à l'écliptique et à son 
pôle. Ses coordonnées sont alors sa longitude l et sa latitude X : ce sont les 
coordonnées écliptiques. On ne les mesure pas directement ; on les déduit, 
par le calcul, des coordonnées équatoriales, comme on va le voir.

Nous allons donner les formules qui servent à passer d’un système à un 
autre.

470. Formules pour passer des coordonnées azimutales aux coordon­
nées horaires. — Soient vfig. 125) : T la sphère céleste, NHS l’I.orizon, TZ la

verticale du lieu, PP'l’axe du monde, 
NZS le méridien, C0' l’équateur, 
AA'B le cercle diurne d’un astre. Soit 
A’ la position de cet astre, à l’instant 
considéré : son vertical est ZA’H, et 
son cercle horaire est PAC'. On 
donne son azimuth SH =  A, et sa dis­
tance zénithale A Z =  Z ; et il faut 
calculer la déclinaison A'C' - ( ¾  et 
son angle horaire CPC' =  Ht

Or, dans le triangle sphérique 
ZPA', on connaît la distance zéni­
thale du pôle PZ =  P, le côté ZA' =  
Z et l’angle compris PZA' =  180e — 

A ; o .l aura donc, pour calculer le côté PA' =  90° — (¾ et l’angle ZPA' =  Ht

cos PA' =  cos PZ cos ZV -+- sin PZ sin Z A' cos PZA', 
cot ZA' sin 1 Z =  cos PZ cos PZA'+ sin PZA' cot Zt’A';

ou
sin (¾ =  cos P cos Z — sin P sin Z cos A, 1 
cot Z sin P =  — cos P cos A +  sin A cotH»; j '  ' 

formules qui font connaître (¾ et Ht .

471. Formules pour passer des coordonnées horaires aux coordon­
nées azimutales. — Dans le même triangle PZA',on connaît PZ =  P, PA' =  G0° 
— (J), et l’angle compris ZPA '=H , ; et l’on a, pour calculer ZA' =  Z, et PZA'= 
180° — A,

cos Z.V =  cos PZ cos PA' +  sin 1>Z sin PA' cos ZPA', 
cot PA’ sin PZ =  cos PZ cos ZPA' +  sin ZPA'cot PZA'; 

ou
cos Z =  cos P sin (¾ +  sin P cos (¾ cos Ht , I 
tang® sin P=cos P cos H„—sin H,cot A; j (2)

formules qui donnent Z et A.
472 Formules pour passer des coordonnées azimutales aux coordon­

nées équatoriales, et réciproquement.—Comme la déclinaison (B de l’astre 
est une coordonnée commune aux deux systèmes, il suffit, pour résoudre la



question, d'établir une relation entre l’angle horaire et l’ascension droite. Or, 
en désignant par l’angle horaire du point verrai, on a trouvé (u° 3G) :

A »+H, =  H (3).
I •

On sait d’ailleurs (n» 28), que

H =  15» X  f,

t étant l’heure sidérale. On doit donc regarder HT comme déterminé, quand 
on connaît l’heure sidérale de l’observation ; et la formule (3) fait connaître 
A  ou H,.

473. Formules pour passer des coordonnées équatoriales aux coor­
données écliptiques —Soient (üg. 12G) :T la sphère céleste, EE' l’équateur, 
CC'l’écliptique ; TP, TP,, les axes 
de ces deux grands cercles. Soit S 
la position d’un astre : menons 
les deux grands cercles PSD,
P,SL. La décliuaison de l’astre est 
SD =  03 f son ascension droite 
est T  D =  A- Sa latitude, c’est-à- 
dire sa distance à l’écliptique 
(positive ou négative, suivant 
qu’elle est boréale ou australe), 
est l’arc SL =  X ; sa longitude, 
c’est-à-dire la distance du pied 
du cercle de latitude au point 
vemal, est l’arc r  L = l ;  elle se 
compte, comme l’ascension droite Fig. (26.
et dans le même sens, de 0” à 3G0°.

On connaît 03 et X . et l’on veut calculer X et /. Or, dans le triangle sphé­
rique PSP,, on connaît le côté PS =  90» — (33, le côté PP, =  w qui est l’obli­
quité de l’écliptique, et l’angle compris P1PS =  90» +  A l et l’on aura, pour 
calculer le côté, P,S =  90» — X et l’angle PP,S =  90“ — /,

cos PjS =  cos PP, cos PS +  sin PP, sin PS cos P,PS, 
cot PS sin PP, =  cos PP, cos P,PS +  sin P,PS cot PP,S; 

ou
sin X =  cos w sin 03 — sin a> cos 03 sin A> I . . .
tang 03 sin w =  —cos to sin A + co s Atang l ; j '  '

formules qui donnent X et l.
Si l’astre est le soleil, on a X =  0, et le triangle rectangle T  SH (fig. 48, 

p. 105), donne immédiatement

cos l =  cos +  cos 03-
474. Formules pour passer des coordonnées écliptiques aux coor- 

donées équatoriales. — Dans le même triangle PSP,, on connaît le
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côté PPi =  w,le côté P,S =  90“ — et l’ongle compris P,PS =  90-> — l ; et 
l’on a, pour calculer le côté, PS =  90° — 33, et l’angle P,PS =  90°-|-A.

cos PS =  cos PPi cos PjS +  sin PP, sin P,S cos PP,S, 
cot P,S sin PPj =  cos PPj cos PPjS +  sin PP,S cot P,PS ; 

ou
sin (]J =  cos m sin X +  sin w cos ), sin /, 1
tang X sin w =  cos w sin l — cos l  tang A  ; j 'J'

formules qui font connaître 33 et J),.

475. Remarque. — Si l’on joint S'Y" par un arc de grand cercle, oh 
forme deux triangles rectangles S T  D, S T  L, ayant la même hypoténuse, et 
qui donnent, entre les trois côtés, les deux relations

cos S T =  cos 33 cos A, cos S T  =cos À cos l, 
et, par suite, cos 33 cos A  — cos X cos l ; (G)

formule qui établit une relation entre les quatre coordonnées, propre à four­
nir une vérification.

476. Calcul de ces formules par logarithmes. — Les formules précé­
dentes ne sont pas, en général, calculables par logarithmes. Pour montrer 
comment on opère cette transformation, choisissons les formules (4) (n° 4 7 3 ) ,  

qui sont les plus souvent employées. On pose :

sin A  cos 33 =  M sin 6, sin 33 =  M cos 0,

d’oùl’ontire: tang 8 =  sin A cot 33. M =  —n®, (7)cos 0

formules qui font connaître 0 et M.
Puis on écrit la seconde des formules (4) de la manière suivante :

, cos m  sin A cos 33+ s>n u sin 33 
tang -----------côsXcos®---------- ’

ou, en remplaçant sin A  cos 33 et sin 33 par leurs valeurs,
Msin(0+w) tg33 sin (0-f u>)t a n g f = ------p — -zirt ou tang l = i *  - (8)cos A  cos 33 b cos A  cos 0 1 ;

Une transformation analogue, faite sur la première des équations (4), donne

sin X =  M cos (0 +  a>), ou sin X =  — n ®  C0Scos 0
Si l’on veut, au lieu de sin X, calculer tang X, qui offre plus d’avantage, on 
divise cette dernière formule par la formule (G), et l’on a :

tang X _  tang 33 cos (0 +  to) 
c l  cos A cos 0

Puis on divise celle-ci par la formule (8), ce qui donne : 

tang X =  sin l cot (0 +  w). (9)
Ces formules (8) et (9) font connaître l et X.
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477. Transformation des coordonnées sphériques en coordonnées 
rectilignes. — 11 est utile, dans un grand nombre de questions d’astronomie, 
d’employer des coordonnées rectilignes. On prend alors pour origine le centre de 
la terre, et pour axes coordonnés rectangulaires, la ligue des équinoxes, la 
ligne des solstices et l’axe de l’écliptique. Soient TX, TY, TZ ces trois axes 
(fig. 127). Soit S un point de l’espace, et soient SP =  Z, PQ =  Y et TQ =  X,

les coordonnées de ce point. Comme le plan XTY est celui de l’écliptique, si 
l’on suppose que TX se dirige vers le point vernal, et que les longitudes se 
comptent dans le sens XY, l'angle XTP =  L sera la longitude, et l’angle 
STP =  A la latitude du point S. Posons d’ailleurs TS =  R ; ce rayon vecteur 
est supposé connu.

On a, dans le triangle SPT,
SP =  Z =  R sin A, TP =  R cos A-, 

puis dans le triangle TPQ,
TQ = X =  TP cos L =  R cos A cos L,
PQ =  Y =  TP sin L =  R cos A sin L.

Ainsi on a:
X =  R cos A cos L, j 
Y =  R cos A sin L, > (10)
Z =  R sin A; ) 

formules qui résolvent la question.
Les formules inverses s’en déduisent facilement ; on trouve

R4 =  X4 +  Y4 +  Z4, \
Y ltang L , f

z (,1)
sin A =  —  . 1

VX4+Y4 + Z4 J
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Si l'on prenait, comme on le fait quelquefois, pour axe des z l’axe des pôles, 
pour axe des x  la ligne des équinoxes, et pour axe des y la perpendicnlaire 
aux deuf autres, les formules seraient les mêmes; seulement on remplacerait 
la longitude et la latitude par l’ascension droite et la déclinaison.

478. Formules générales de transformation des coordonnées polai­
res. — Conservons les notations du numéro précédent. Soit, en outre, M un point 
de l’espace, dont les coordonnées rectangulaires sont Tq =  x , q p = y ,  pM =  
z, et dont les coordonnées polaires sont le rayon vecteur TM =  r, la longitude 
pTq =  /, et la latitude MTp =  X. Menons par le point S les axes SX', SY', SZ’, 
parallèles aux premiers ; et soient S q' — x1, q'p' — ÿ',Mp' =  z' ses coordon­
nées rectangulaires, etSM =  r', q 'S p '= l\ MSp'=-5/, ses coordonnées po­
laires par rapport au point S. On a évidemment, comme ci dessus :

x  =  r  cos 5. cos l , \  a / = r '  cos X' cos i',
ÿ =  r  cos X sin /, J y’ =  >J cos X' sin i \
z =  r  sin X. ) z' =  iJ sin X'.

D’un antre côté, on a,

x '= x  — X ,\
ÿ = ! / '  +  Y, ! d’où y '= y — Y, |
z =  z' -(- Z, ) z' =  z Z. j

Donc, en remplaçant les coordonnées rectilignes par leurs valeurs, on a s
r’ cos X' cos I' =  r cos X cos / — R cos A cos L, \
r' cos X' sin I' — r cos X sin l — R cos A sin L, ! (12)

r' sin X' =  r  sin X — R sin A. )

Ces formules fournissent »•’, X', l', quand on connaît r, X, l, et R, A, L. 
Pour obtenir ces inconnues, en fait d’abord la somme des carrés, ce qui 
donne :

,.’î — r* +  R* _  2Rr [sin X sin A+ cos X cos A cos (l — L)].

Puis on divise la seconde des formules (12) par la première, et l’on a :
r  cos X sin l — It cos A sin L 

tang r  cos j cos i _  JJ cos v cos L

Enfin, V étant connue, on divise la troisième par la seconde, et l’on a ;

tang X'______ r  sin X — R sin A
sin l  ~  r cos X sin i  — R cos A sin L ‘

r
On voit que V et X’ ne dépendent que du rapport -j -̂des distances des deux 

points M et S à la terre ; et quand ce rapport est donné, la formule précé­

dente fait connaiire

479. Transformation des coordonnées géocentriques ethéliocentri- 
ques — Les observations d’un astre M sont naturellement rapportées au centre
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T de la terre ; la longitude l et la latitude X, ainsi déterminées, se nomment les 
coordonnées géocentriques du point M. Si l’on mène, par le centre du soleil, 
trois axes parallèles à la ligne des équinoxes, à la ligne des solstices et à
l’axe de l’écliptique, la longitude et la latitude de l’astre M, prise par rap­
port à ce centre, sont ses coordonnées héliocentriques. Or, il est fort utile de 
rapporter au centre du soleil les observations faites du centre de la terre; 
il faut, pour cela, transformer les coordonnées géocentriques en coordonnées 
héliocentriques. D’ailleurs cette transformation résulte des formules (12). Car, 
si l’on suppose que le point S est le soleil, et que le point M est l’astre dont 
on demande les coordonnées héliocentriques, il suffit de poser A =  0, puis­
que le soleil est dans le plan de l’écliptique; et les formules (12) deviennent :

r ' cos X' cos l' =  r  cos X cos l — R cos L, j
r' cos X' sin l' — r cos X sin l  — R sin L [ (13)

*•' sin X’ =  r sin X, J
ou, d’après les transformations indiquées,

r ’* = R 8-t-r* — 2Rr cos X cos [l — L), \
_r cos X sin l — R sin L J

tang r cos X coi / — R cos L’ \ (14)
tang X'_______ »■ sin X______  I
sin t' r cos X sin / — R sin L ]

Les deux dernières formules (14) fournissent les deux coordonnées héliocen­
triques I' et X' du point M en fonction de ses coordonnées géocentriques /  et X

Tet du rapport — • 
n

480. Démonstration analytique des lois du mouvement diurne. — 
Les formules .que nou avons démontrées dans cette note peuvent servir & 
vérifier analytiquement les lois du mouvement diurne. Ainsi :

1° Le mouvement diurne est circulaire. En effet, la distance polaire

Fig. 128.

PA = p  d’une étoile (fig. 128), à un instant donné, étant le complément de la
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déclinaison, sera fournie par la première des formules (I), dans laquelle on 
cmplacera (¾ par 90° — p, ce qui donnera :

cos p =  cos P cos Z — sin P sin Z cos A. (15)

Si l’on applique cette formule à une étoile quelconque, quel que soit l’instant 
de l’observation, on trouve que p est constant : donc le mouvement est cir­
culaire.

On peut d’ailleurs vérifier cette valeur constante par l’observation directe; 
car, au moment où l’astre passe au méridien, sa distance polaire PA est évi­
demment (fig. 129) la somme ou la différence des distances zénithales connues

PZ et Z \, selon que le passage a lieu au sud du zénith en A, ou au nord en A’.
2” Le mouvement diurne est uniforme. En effet, la seconde des formules fl), 

résolue par rapport à H,, donne

cot H, cot Z sin P -|- cos P cos A _ 
sin A ’ (IG)

et si on l’applique aux différentes positions d’une même étoile quelconque, on 
trouve que l’angle horaire H, est proportionnel au temps sidéral écoulé depuis 
le passage de l’astre au méridien. Donc le mouvement est uniforme.

481. Autre application. — Pour appliquer la première des formules (1) à 
l’instant où l’astre passe au méridien, il suffit de poser A =  180°, ou A = 0 ,  
selon que l’étoile passe entre P et Z (fig. 125) ou au sud du zénith ; et la for 
mule devient !

sin (¾ =  cos P cos Zrfcsin P sin Z, 
ou sin ®  =  cos (Z ±  P), (17)

formule équivalente A celle du n° 40.
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NOTE Il (n»33, p. 25).

B'reuves de la rotation de la terre.

182. Preuve tirée de la forme de la terre . — Lorsqu’un corps fluide, dont 
les molécules agissent les unes sur les autres comme si elles s’attiraient, 
tourne autour d’un are fixe, la mécanique démontre que ce corps doit prendre, 
sous l’influence du mouvement de rotation, une forme déterminée ; cette 
forme est permanente, si le mouvement est uniforme. Or la terre nous pré­
sente la forme d’un ellipsoïde de révolution, dont le petit axe est l’axe des 
pôles (n° 84) ; et cette furme est précisément celle qu’elle a dù prendre, si 
l’on admet qu'elle a été fluide autrefois, et qu’elle tournait alors autour de 
son axe avec la vitesse angulaire que nous lui attribuons aujourd’hui. On 
peut donc regarder la forme de la terre comme une preuve de son mouvement 
de rotation sur elle-même.

483. Preuve tirée de la variation de la pesanteur avec la latitude. —
Lorsqu’on fait osciller un pendule en différents lieux, on constate que la 
durée de l’oscillation varie avec la latitude ; et comme cette durée dépend de 
la gravité g, d’après la formule bien connue

on en conclut que l’intensité de la pesanteur augmente avec la latitude. Ainsi 
on trouve que l’accélération due à cette force, prise au niveau des mers, est :

A l’équateur, g =  9m,77980,
Sous le parallèle moyen, g =  9m,80587,
A la latitude de Paris, g — 9“ ,80890,
Au pôle, g =  9m,83154.

En général, si l’on prend pour valeur initiale de g celle qu’on trouve sous 
l’équateur, on a, pour la latitude la formule :

g =  9“ ,779S0-(- 0,05174 sin * \  (t).

Ainsi l'accélération g croit, en fait, proportionnellement au carré du sinus 
de la latitude.

L’aplatissement de la terre suffit, il est vrai, pour expliquer le sens de cette 
variation. Car on sait que l’attraction en chaque lieu est inversement propor­
tionnelle à la distance du lieu au centre de la terre ; la pesanteur doit donc 
aller en augmentant, lorsqu’on s’éloigne de l’équateur. Mais si l’on calcule la 
valeur de cette augmentation, ce qui est possible, puisque la forme du méri­
dien est connue, on reconnaît que la diminution du rayon terrestre n’est pas 
suffisante pour rendre compte de sa grandeur; et l'on trouve, dans le mou-
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vemcnt de rotation de la terre, une autre cause d’augmentation, qui, combinée 
avec celle que nous venons d’indiquer, assure aux résultats du calcul un 
accord satisfaisant avec ceux de l’observation.

En effet, on peut d’abord calculer la force f,  qui oblige un corps pesant, de 
masse m, placé sur un support, à la surface de la terre, en un point A 
(fig. 130), dont la latitude est X, à tourner uniformément en un jour sidéral

autour de l’axe PP'. D’après les principes de la mécanique, puisque le mou­
vement est circulaire et uniforme, cetie force est constante, dirigée vers le 
centre I du parallèle décrit et égal à m. Al. ta*, iu étant la vitesse angulaire de 
la terre par seconde. Or, en désignant par r le rayon de l’équateur, on a scn-

siblement AI =  r cos X ; on a, de plus, w =  — , si l’on désigne par T la durée

4 71® JW J’ cos Xdu jour ou 8GIG4 secondes solaires moyennes. Donc/’ = -------2------ .

Pour effectuer le calcul, on pose n =  3,1415926, xr  =  20035188, et l’on 
trouve / =  m X 0,033853 cos

Puis ou remarque que cette force f  est la résultante des deux forces qui 
sollicitent le corps, et qui som : 1° l’attraction F dirigée vers le centre T, et 
2“ la réaction P du support, égale et contraire au poids, et dirigée suivant la 
verticale AZ et de bas en haut. Par conséquent, chacune de ces trois forces 
doit être proportionnelle au sinus de l’inclinaison des deux autres. Si donc 
on désigne par a l’angle très-petit que la direction de l’attraction fait avec 
celle du poids, on aura :

F P f
sin X sin [X—-a) sin a "

De là on tire :

f _______ F - P  f _______F -  P
sin a sin X — stn (X — a)’ „ . a a ~ „ . a a \ .2 s i n - c o s j  2sm -  cos(X— -  I ;

Fig. 130.
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d’où

f  COS ^  X —  |  j

F — P — ---------------- -- '
ac°s -

D’ailleurs, a étant très-petit, en peut le regarder comme nul, et l’on a très- 
npproximativement :

F — P =  f  cos

D’un autre côté, on a :

P PP =  mg, d’où m =  — > et f =  — X 0,033853 cos >: donc 
9 9

F — P = J  X 0,033853 cos» )., ou F =  P  ̂1 +  °’-—85̂ .. j ,

et, par suite,

P =  F ^ 1 — 0.033853 cos» ), ̂  _

Ainsi l'action de la 12 re est diminuée, par son mouvement de rotation, 
d’une quantité qui est sensiblement proportionnelle au carré du cosinus de 
la latitude. Le poids d’un corps doit donc augmenter, quand on le transporte 
de l’équateur vers le pôle. C. Q. F. D.

( 0 033853X 
i — ■—

ou, à peu près, P =  F — 'ôTjjj)' ®1- 1 =  289; donc si la terre tournait

17 fois plus vite, la force Userait 289 fois plus grande; par suite, on aurait 
P =  0 ; les corps ne pèseraient plus à l’équateur, tandis qu’aux pôles leurs 
poids subsisteraient en entier.

On peut consulter sur cette question nos Éléments de mécanique, 2e édition, 
liv. II, cliap. vi, n°* 245 et 240.

NOTE III (n° SI, p. 41).

Distance des étoiles à la terre.

tô t .  — Les efforts des astronomes pour déterminer la parallaxe annuelle 
des étoiles, et par suite leur distance à la terre, ont été longtemps infructueux. 
On savait seulement que cet angle était, pour chacune, au-dessous d’une se­
conde. C’est en 1838 que, pour la première fois, Dessel, directeur de l’Obscr-
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vatoire de Kœnigsberg, est parvenu il un résultat positit. Nous allons exposer 
succinctement, dans cette note, les idées qui l’ont guidé datis ses recherches 
et la méthode qu’il a suivie.

48B Le mouvement de translation de la terre  produit un mouvement 
apparent de l’étoile sur la sphère céleste. —En effet,soit TT'T" (fig. 132) 
l’orbite de la terre, et soit A la position d’une étoile. L’observateur, placé en T, 
voit l’étoile dans la direction TA ; lorsque le mouvement de la terre l’amène en

T', il voit l’étoile dans une direction diffé­
rente T'A. Pour apprécier l’effet de ce chan­
gement de direction, concevons qu’un obser­
vateur fictif soit immobile sur le soleil S; 
et cherchons comment l’étoile devrait se dé­
placer, pour qu’il la vit de la même manière 
que l’observateur réel la voit de la terre.

Pour cela, menons une droite SE égale 
et parallèle à TA ; c’est évidemment en 
E que devra se trouver l’étoile, pour êire 
vue du point S de la même manière 
qu’on la voit du point T. Mais comme 
AE est alors égale et parallèle à TS, il 

en résulte que, pour avoir la position cherchée de l’étoile, il suffit de me­
ner, par sa position réelle A, une droite AE égale et parallèle au rayon 
vecteur ST de la terre, mais de sens contraire. Par suite, lorsque la terre sera 
venue en T’, on mènera AE' égale et parallèle à T'S, et l’on aura la position 
E' que devrait occuper l’étoile, pour être vue du point S comme on la voit du 
point T'. Ainsi, lorsque la terre parcourt son orbite, les directions succes­
sives, suivant lesquelles l’observateur aperçoit l’étoile A, sont les mêmes que 
s’il était immobile au centre dn soleil, et que l’étoile parcourût une certaine 
courbe EE'E", déterminée comme on vient de le voir. D’ailleurs, cette courbe 
est égale à TT'T", et est située dans un plan parallèle au plan de l’écliptique, 
puisque les secteurs TST', EAE', sont évidemment égaux, quels que soient 
les angles décrits, et qu’ils ont leurs plans parallèles.

On peut, sans erreur sensible, considérer la courbe EE'E" comme un cercle. 
Comme l’observateur se croit immobile, chaque étoile doit donc lui paraître, 
en vertu du mouvement de translation de la terre, décrire en un an, autour 
de sa position réelle, un cercle égal à l'orbite terrestre. Mais il rapporte tous 
les mouvements à la sphère céleste; or cette sphère coupe généralement sui­
vant une petite ellipse le cône qui a pour sommet son œil et pour base le 
cercle EE'E'". Il doit donc voir l'étoile décrire annuellement une ellipse, dont 
le grand axe est parallèle au plan de l'écliptique. Cette courbe, d’ailleurs, de­
vient un cercle, pour une étoile située au pôle de l’écliptique ; elle se réduit 
A son grand axe, quand l’étoile est dans le plan même de l’écliptique. Dans 
tous les cas, ses dimensions sont extrêmement petites, à cause de la grande 
distance de l’étoile à la terre. De plus, elles sont d’autant moittdres,
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toutes choses égales d’ailleurs, que l’étoile est plus éloignée de nous ; car le 
cône qui les fournit par son intersection avec la sphère céleste a toujours 
pour sommet l'oeil de l’observateur, et sa base est constante et égale à l’orbite 
terrestre.

•486. La détermination de l'ellipse apparente décrite par une étoile 
conduit à la mesure de la parallaxe annuelle de l’astre. — En effet, l’angle 
sous lequel un observateur, placé en S(fig. 132), verrait deux positions quelcon­
ques E, E’, de l’étoile, est évidemment égal à l’angle sous lequel un observateur 
placé en A verrait les positions correspondantes T, T', de la terre. Par consé­
quent, l’angle sous lequel, du point S, on verrait le grand axe de 1 ellipse ap­
parente est égal à l’angle sous lequel, du point A, on verrait celui des dia­
mètres de l’orbite terrestre qui est parallèle à ce grand axe. Or ce dernier 
angle est le double de ce qu’on appelle la parallaxe annuelle {n° 51) de l’étoile. 
Donc, pour connaître cette parallaxe, il suffira d’évaluer le diamètre apparent 
du grand axe de l’ellipse, et d’en prendre la moitié.

•487. Méthode de Bessel. — 11 est naturel de penser que les distances des 
étoiles au soleil, toujours fort grandes, sont très-différentes. Les ellipses 
qu’elles paraissent décrire, toujours très-petites, doivent donc avoir aussi 
des dimensions très-diverses; et, pour la plupart d’entre elles, ces dimen­
sions doivent être totalement insensibles. Ces dernières étoiles peuvent, 
par suite, être considérées comme fixes. Mais, s'il existe dans une région du 
ciel une étoile assez voisine de nous pour avoir une parallaxe appréciable ; 
et si, en même temps, il y a, dans la même région, d’autres étoiles trop 
éloignées pour que leur mouvement apparent soit sensible, il est évident que 
la première paraîtra se déplacer par rapport aux autres, et que celles ci 
pourront servir de points de repère fixes pour mesurer son mouvement 
annuel.

Or certaines considérations, tirées des mouvements propres des étoiles, 
conduisirent Bessel à supposer que la 01e du Cygne était une des étoiles 
les moins éloignées de la terre. Il chercha donc à mesurer, à diverses 
époques de l’année, les distances angulaires qui la séparaient de deux étoiles 
voisines, éloignées d’elle, l'une do 8 minutes environ, l’autre de près de 
12 minutes ; et il reconnut qu’à certaines époques, elle se rapprochait 
constamment de l’un des repères, en s’éloignant de l’autre, taudis que, 
six mois plus tard, e l̂e s’éloignait du premier pour se rapprocher du 
second.

Mais la mesure de ces distances ne pouvait être effectuée à l’aide des 
lunettes ordinaires à réticule; car, quoique très-fin, un des fils du réticule eût 
peut-être couvert toute la région du ciel où s’opérait le mouvement de l’étoile. 
Bessel se servit d’un instrument spécial, appelé héliomètre, que nous allons 
décrire.

488. Héliomètre. — Cet instrument est une lunette astronomique sans ré­
ticule, dont l’objectif O est coupé en deux parties égales par un plan AB 
passant par son axe de figuro (fig. 133). L’une des moitiés ACB est fixée au

335
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c o r p s  d e  l a  l u n e t t e ,  t a n d i s  q u e  l ’a u t r e  A D B  p e u t  g l i s s e r  s u r  l a  p r e m iè r e  s u i ­

v a n t  le  p la n  A B , à  l 'a i d e  d ’u n e  v is  à  t ê t e  g r a d u é e ,  e t  v e n i r  o c c u p e r  u n e  p o s i ­

t i o n  d i f f é r e n te  (flg. 131 .)

L o r s q u e  l a  l u n e t t e  e s t  d i r i g é e  v e r s  u n e  é t o i l e ,  d e  t e l l e  s o r t e  q u e  c e t t e  

é to i le  s o i t  d a n s  le  p la n  d e  s é p a r a t i o n  A B , c h a q u e  p a r t i e  d e  l a  l e n t i l l e  r é f r a c t e  

l a  l u m iè r e ,  e t  f a i t  c o n v e r g e r  le s  r a y o n s  e n  u n  p o in t  q u i  e s t  l ’im a g e  d e  l ’a s t r e ,

e t  q u i  e s t  a u s s i  s i t u é  d a n s  c e  p l a n .  C e s  d e u x  im a g e s  s e  c o n f o n d e n t ,  l o r s q u e  

le s  d e u x  m o i t ié s  s o n t  d a n s  l a  p o s i t i o n  q u ’i n d i q u e  l a  f ig u r e  1 3 3 . M a is  e l l e s  s e  

s é p a r e n t  e t  s e  d i s t i n g u e n t  l ’u n e  d e  l ’a u t r e ,  s a n s  s o r t i r  d u  p l a n  A B , l o r s q u e  

le s  b a s e s  d e s  d e u x  d e m i - l e n t i l l e s  n e  c o ï n c id e n t  p lu s  ( f ig u r e  1 3 4 ) ;  i l  a r r i v e  

s e u l e m e n t  q u e  c h a c u n e  d ’e l le s  a  m o in s  d ’é c l a t  q u e  lo r s q u ’e l le s  s o n t  s u p e r ­

p o s é e s .

C e la  p o s é ,  c o n c e v o n s  q u e  l ’o n  d i r i g e  l ’h é l io m è t r e  v e r s  le s  d e u x  é t o i le s  v o i­

s in e s  d o n t  o n  v e u t  m e s u r e r  l a  d i s t a n c e  a n g u l a i r e ,  e t  q u 'o n  f a s s e  t o u r n e r  

l ’o b j e c t i f  a u t o u r  d e  l ’a x e  d e  f ig u r e ,  d e  m a n iè r e  à  a m e n e r  le  p l a n  A B  à  c o n t e n i r  

le s  d e u x  a s t r e s .  L e s  d e u x  d e m i - l e n t i l l e s ,  d ’a b o r d  s u p e r p o s é e s ,  n e  d o n n e n t  

q u ’ u n e  im a g e  p o u r  c h a q u e  é t o i l e ;  m a i s  lo r s q u ’o n  f a i t  g l i s s e r  

l a  m o i t ié  m o b i le ,  o n  v o i t  c h a q u e  im a g e  s e  d é d o u b l e r ,  l a  p r e ­

m i è r e  é t o i le  d o n n a n t  l i e u  a u x  d e u x  im a g e s  A e t  A ',  e t  l a  

s e c o n d e  a u x  im a g e s  B  e t  B ' (fig . 1 3 5 ). A m e s u r e  q u e  c e  m o u ­

v e m e n t  c o n t i n u e ,  o n  v o i t  le s  i m a g e s  m o b i le s  A ' e t  B ’ s ’é c a r ­

t e r  d e s  im a g e s  f ix e s  A  e t  B  ; e t  i l  a r r i v e  u n  m o m e n t  o ù  A ' v i e n t  d e  c o ï n c id e r  

a v e c  B . A  c e  m o m e n t ,  l ’im a g e  A ' a  p a r c o u r u  l a  d i s t a n c e  A B q u e  l ’o n  v e u t  

é v a l u e r ;  e t  c e t t e  d i s t a n c e  e s t  m e s u r é e  a v e c  p r é c i s io n  p a r  l e  n o m b r e  d e  

d iv i s io n s  d o u t  l a  v is  a  t o u r n é .

4 8 9 .  P a r a l l a x e  a n n u e l l e .  —  C ’e s t  p a r  d e s  o b s e r v a t io n s  n o m b r e u s e s  d e  

c e t t e  n a t u r e  q u e  B c s s e l e s t  p a r v e n u  5  c o n s t a t e r  l ’e x i s t e n c e  d u  m o u v e m e n t  a n ­

n u e l  e t  p é r i o d iq u e  d e  l a  61* é t o i le  d u  C y g n e ,  à  le  m e s u r e r ,  e t  à  f ix e r  0 ^ ,3 5  

p o u r  v a l e u r  d e  s a  p a r a l l a x e  a n n u e l l e ,  e n  s u p p o sa n t in s e n s ib le s  c e l le s  d e s  d e u x  

é to ile s  q u i  s e r v a ie n t  d e  r e p è r e s . D e p u is ,  M M . S tr u v e  e t  P e te r s  o n t  d é t e r m i n é  

c e l le  d e  W é g a ,  e t  l ’o n t  t r o u v é e  é g a le  à  0 " ,2 3 .  O n  a  p u  e n c o r e  e n  m e s u r e r  

q u e l q u e s  a u t r e s  ; m a i s  o n  n ’a  p a s  o b t e n u  p o u r  e l l e s  l e  m ê m e  d e g r é  d ’e x a c t i ­

t u d e  q u e  p o u r  le s  d e u x  p a r a l l a x e s  d o n t  n o u s  v e n o n s  d e  p a r l e r .  (V o ir  le s  n o te s  

d e  B e s s e l ,  i n s é r é e s  a u x  C o m p tes  r e n d u s  d e s  s é a n c e s  d e  l ’A c a d é m ie  d e s  

s c ie n c e s ,  a n n é e  1 8 3 8 , t .  V I I ,  p .  7 8 5 , e t  a n n é e  1 8 4 0 , t .  X ,  p .  7 0 3 .)
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■floo. Usage de l'héliomètre, pour constater que le disque du soleil 
est circulaire. — L’ingénieux appareil, dont nous venons d’indiquer un des 
usages les plus remarquables, a été inventé par Bouguer en 1748, pour me­
surer les dimensions du soleil. On comprend, en effet, que, si l’on dirige 
riiéliomètre vers le soleil, lorsque les deux moitiés de l’objectif sont juxta­
posées, on n’aperçoit qu’une seule image de l’astre ; mais si l’on fait glisser la 
moitié ADB, l’image du soleil se dédouble, et il arrive un moment où les 
deux disques deviennent tangents. A ce moment l’image mobile a parcouru 
une distance exactement égale au diamètre de l’image fixe, qui est parallèle 
a i plan AB, et ce diamètre est mesuré par le nombre de divisions dont la vis 
a tourné. Si maintenant on fixe les deux demi-lentilles dans la position qu’elles 
occupent l’une par rapport à l’autre, et qu’on les fasse tourner ensemble au­
tour de l’axe de la lunette, on voit que les deux images, dont l’une tourne 
autour de l’autre, ne cessent pas d’ùtre tangentes : donc tous les diamètres de 
l’image fixe sont égaux ; donc le disque du soleil est circulaire. (N° 116, p. 93.)

NOTE IV (a” 54, p. 44).

Scintillation des étoiles.

491. — « La scintillation, dit Arago (Annuaire de 1852, p. 365), consiste 
s an des changements d’éclat des étoiles très-souvent renouvelés. Ces chan- 
« gements sont ordinairement, sont presque toujours accompagnés de varia- 
« tions de couleurs et de quelques effets secondaires, conséquences immédiates 
k de toute augmentation ou diminution d’intensité, tels que des altérations 
« considérables dans le diamètre apparent des astres, etc. »

Les observateurs sont, en général, d’accord, pour dire que les planètes 
elles-mêmes scintillent comme les étoiles; cependant la scintillation de Sa­
turne est fort difficile à saisir.

« On croit généralement que la scintillation n’existe pas dans les lunettes; 
« cette opinion, quoique professée par des hommes de génie, par Newton, 
« par exemple, est erronée.

« Quand on place devant l’objectif d’une lunette astronomique achroma- 
« tique un couvercle percé d’une ouverture circulaire d’un diamètre réduit, 
« de 3 à 4 centimètres, par exemple, les images des étoiles au foyer sont 
a rondes, bien terminées et entourées d’une série d’anneaux lumineux et 
o obscurs, très-déliés et très-serrés. L’éclat de ces anneaux varie incessam- 
« ment sur les diverses parties de leurs contours ; souvent, en quelques 
« points, il y a disparition totale.

a Tout restant dans le mOme état, si l’on enfonce peu à peu l'oculaire, on 
C03J1. G. 22
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« verra l’image de l’étoile se dilater graduellement, et bientôt une tache 
« noire, ronde, tranchée, un véritable trou obscur se formera dans le centre. 
« La distance du foyer à laquelle on observera cette tache variera avec le 
a diamètre de l’ouverture placée devant l’objectif.

« Un nouveau mouvement de l’oculaire, dans le même sens, amènera d’a- 
« bord la dilatation de la tache obscure, et ensuite la naissance d’un petit 
« disque lumineux qui en occupera le milieu. L’image de l’étoile, en allant 
« du centre à la circonférence, sera alors ainsi composée : disque lumineux, 
« large anneau obscur, large anneau lumineux. Dans une troisième position 
« de l’oculaire plus voisine encore de l’objectif, le centre de l’image sera 
« obscur ; à l’anneau large et brillant qui entourera ce centre succédera un 
« anneau sombre, suivi à son tour d’un anneau lumineux.....

« Supposons, pour un moment, que l’oculaire de la lunette soit dans une 
« de ces positions où le centre de l’image de l’étoile, encore tout à fait 
« obscur, est près de devenir lumineux. Si l’étoile ne scintille pas, un petit 
o point lumineux apparaît de temps en temps au milieu de la tache noire, 
« comme si, dans cet instant, on avait légèrement enfoncé l’oculaire. Lors- 
« que la scintillation est fréquente, les changements de celte espèce sont 
« continuels. »

Arago, auquel nous avons emprunté la description du moyen imaginé par 
lui pour étudier la scintillation à l’aide des lunettes, a donné une explication 
complète du phénomène, fondée sur la théorie des interférences. Nous ne 
pouvons pas suivre ici l’illustre astronome dans les raisonnements par lesquels 
il appuie son opinion. On en trouvera les détails dans l'Annuaire pour 1852; 
on pourra y lire en même temps les diverses explications qui ont été données 
avant lui, et les objections qu’il leur oppose, et l’on sera frappé de la simpli­
cité et do la netteté de celle qu’il propose à son tour.



ADDITIONS, 2 8 J

L IV R E  II. -  L A  TERRE.

NOTE V (n° 65, p. 52).

Valeur approchée du rayon de la terre.

•492. On peut, eu admettant la sphéricité de la terre, déterminer son 
rayon à l’aide des considérations du 
n° 64 (p. 52,'. En effet, soit la terre 
représentée par le cercle O (fig. 136; ; 
soient R son rayon OA, h la hauteur 
AB, à laquelle un observateur s’élève 
au-dessus du niveau do la mer, et 
a la dépression apparente HBC ; le 
triangle OBC, rectangle en C, donne 

OC =  OB cos BOC.
Or les angles BOC et a sont égaux, 
comme ayant les côtés perpendicu­
laires ; donc

R =  (R +  /t/cos a;
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Ainsi ---- -----=  7378040” ,
2 sin! -  

2

et R =  7378565».
Cette mesure, qui a été réellement exécutée, en rade de Brest, à bord du 

Borda, par l’École de marine, donne la valeur du rayon avec une erreur re­
lative par excès d’un septième environ. Cela tient à ce que cette valeur dé­
pend d’une quantité h qui est toujours très-petite, et d’un angle a trop faible 
pour que la plus légère erreur de mesure n’ait pas une grande influence sur 
le résultat final. Nous avons indiqué (p. 61) des méthodes beaucoup plus 
précises pour calculer R. Mais cette première approximation suffit pour faire 
voir combien les montagnes et les vallées de la terre sont peu de chose, lors­
qu’on les compare au globe entier, puisque la plus haute montagne n’a pas 
8500“ , et n’est pas la sept-cent-cinquantième partie du rayon terrestre.

NOTE VI (n° 72, p. 30). 

Du sextant.

493. Principes du sextant. — Soient deux miroirs M, M' (fig. 137), dont 
les plans sont perpendiculaires au plan 
de la figure, et qui font entre eux un an­
gle MAM' que je désigne par a ; un rayon 
SI tombe en I sur le premier, s’y réfléchit 
suivant II', tombe en I' sur le second, et 
s’y réfléchit suivant la direction l'O. Je 
désigne par 6 l’angle que fait la dernière 
direction du rayon avec la première, 
c’est-à-dire l’angle SOI'. Il est facile de 
voir que 0 =  2a. En effet, appelons i et 
i' les angles d’incidence sur les deux mi­
roirs : le triangle 101', dans lequel l’an­
gle extérieur S1I' =  2i', et l’angle inté­
rieur II'O =  2t', donne

0 =  2i— 2f'; (i)
et le triangle IAT, dans lequel l’angle A 
=  a, l’angle I =  90° — i, et l’angle exté­
rieur ll'M '= 0 0 ° — i', donne

a =  (90° — i') — (90» — 0,
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a — i — t’. ( 2 )

En comparant ccs deux formules, on voit que 0 =  2a. Ainsi l’angle compris 
entre la première et la dernière direction du rayon est double de l’angle formé 
par les deux miroirs.

494. Description du sextant. — Le sextant, inventé par Hadley, est 
fondé sur ce principe. Un châssis, en forme de secteur circulaire ACB 
(fig. 13S), porte un limbe AB divisé en demi-degrés (ce limbe comprend C0° ; 
de là le nom do sextant). Une alidade CL, mobile dans son plan autour de son 
centre C, porte en ce point 
un miroir étamé MM qui 
se meut avec elle, et dont 
le plan est normal : c’est le 
grand miroir. Elle porte a 
son autre extrémité un ver- 
nier qui subdivise les divi­
sions du limbe. Un autre 
miroir fixe, plus petit, mm, 
est placé sur le rayon CA 
de l’instrument, un peu en 
dehors, pour ne pas gêner 
le mouvement de l’alidade ; 
il est perpendiculaire au 
plan du limbe, comme le 
premier, et parallèle au 
rayon CB : c’est le petit mi­
roir ; sa face extérieure est
étamée seulement sur une moitié de sa superficie, afin qu’on puisse voir à la 
fois par réflexion sur l’une des parties du miroir et par vision directe à tra­
vers l’autre partie. A cet effet, une lunette O est fixée sur le rayon CB, de 
manière que son axe va rencontrer la ligne de séparation des deux parties du 
miroir mm.

Quelle que soit la position de l’alidade CL, l’angle des deux miroirs est 
égal comme alterne-interne à l’angle LCB, et se mesure à l’aide du vernier L, 
sur la partie BL du limbe. Mais comme l’angle qu’on mesure avec cet instru­
ment est double de l’angle des miroirs, d’après le principe précédent, on a 
doublé les nombres qui représenteraient la graduation réelle, de sorte qu’on 
lit sur l’instrument le véritable angle que l’on veut avoir j c’est pour cela 
que l'arc AB contient 120°, quoiqu’il ne soit que le sixième de la circonfé­
rence.

Cet instrument ne peut pas fournir tous les angles ; aussi Borda a-t-il 
étendu ce mode d’observation, en lui substituant un cercle entier. Mais le 
sextant suffit pour l’usage auquel nous allons l’appliquer.

493. Usages du sextant. — Les marins emploient cet instrument pour

Fig. 138.
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mesurer la distance angulaire de deux astres S et S' (fig. 138). Pour cela, on 
place le pian de l’instrument de manière qu’il contienne ces deux astres, et 
l’on dirige la lunette vers l’astre S', en regardant à travers la partie non 
étamée du miroir mm ; puis on fait tourner l’alidade CL, au moyen d’une vis 
placée près du vernier, jusqu’à ce que les rayons de l’astre S, réfléchis suc­
cessivement sur MM et mm; entrent dans la lunette suivant la même di­
rection S'O que ceux de l’astre S'. Alors les deux astres se trouvent dans le 
champ de la lunette, et l’on peut obtenir la coïncidence rigoureuse des images. 
11 est évident qu’alors la distance angulaire des deux astres S et S' est double 
de l’angle l.CB des deux miroirs, et se lit, par suite, sur l’arc BL.

Cet instrument sert encore à mesurer la hauteur d’un astre au-dessus de 
l’horizon de la mer. Car cet horizon apparaît comme une ligne circulaire 
bleuâtre, très-nettement définie ; on peut donc, en plaçant le sextant dans 
le vertical qui contient l’astre S (fig. 139), pointer la lunette vers cette ligne, 
de manière que la direction de son axe soit une tangente OX à la surface de 
la mer ; puis on peut amener l’image de l’astre à coïncider avec cette ligne

Fig. 139.

après sa double réflexion. Alors l’angle lu sur l’instrument est la hauteur de 
l’astre au-dessus de l’horizon visuel ; mais il faut corriger cet angle de la 
dépression apparente de l’horizon a, qui augmente la hauteur d’environ 4' 19", 
quand on est placé à 5 mètres au-dessus du niveau de la mer.

Le sextant est extrêmement précieux pour les observations à la mer : dès 
que la coïncidence des images a été obtenue, les oscillations du navire ne 
sauraient la détruire, pourvu que les deux points observés soient à peu près 
dans le plan perpendiculaire aux deux miroirs : car cette condition, que sup­
pose le théorème du n” 493, étant remplie, la distance angulaire des deux 
points est exactement double de l’angle des miroirs ; ce dernier ne peut donc 
varier, puisque la distance angulaire est invariable.

On a vu que, pour mesurer la latitude en mer (n» 72, p. 5G), on détermine, 
avec le sextant, la hauteur méridienne d’une étoile dont on connaît la décli­
naison. Sans doute le marin, à bord, ne peut pas la déterminer rigoureuse­
ment, car il tic connaît pas le plan méridien avec une précision bien grande.
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Mais le sextant lui permettra de suivre l’astre dans le voisinage de ce plan, 
et d en apprécier la liauteur maximum, parce que, cette étoile décrivant alors 
un arc parallèle à l’horizon, sa hauteur ne varie pas peudant quelque temps 
à l’époque de son passage. C’est cette hauteur qu’il prend pour valeur de 
l’angle cherché.

Le sextant peut aussi servir, à terre, pour mesurer la hauteur d’un astre 
au-dessus de l'horizon. Mais comme ce dernier plan est masqué ordinaire­
ment par mille accidents de terrain, on emploie un horizon artificiel, obtenu 
par un bain de mercure placé dans une cuvette. Soit HH’ l’horizon artificiel, 
et soit S’I un rayon venant d’un astre quelconque ,fig. 140) ; la hauteur do

l’astre est S'III Le rayon réfléchi en 1 fait avec 1H' un angle égal à l’angle 
d’incidence ; il est reçu directement par la lunette O dans la direction 10. Si 
un rayon SC, venant du même astre, et par conséquent parallèle au premier, 
tombe sur le grand miroir M, placé de telle manière qu’après sa réflexion 
sur m , il parvienne à l’œil dans la même direction que IO, l’angle que don­
nera le sextant sera l’angle SOI ; or cet angle est évidemment double de 
l’angle SOH" ou de la hauteur cherchée, à cause de l'égalité des angles d’in­
cidence et de réflexion. Si donc on amène la coïncidence entre le rayon dou­
blement réfléchi sur les deux miroirs et le rayon réfléchi sur le bain de 
mercure, la moitié de l’angle mesuré par l’instrument sera la hauteur de 
l’astre au-dessus de l’horizon.

Il ne faudrait pas croire que le sextant, qu’on tient à la main, qui parti­
cipe à tous les mouvements de l’observateur, qui subit toutes les oscillations 
du navire, ne donne pas une approximation suffisante. Quand on s’en sert 
pour mesurer les longitudes et les latitudes en mer, la perfection du pro­
cédé est telle, que la position du vaisseau se détermine à chaque instant, avec 
une incertitude moindre que l’étendue de l’horizon que l’œil peut embrasser 
du pont du navire.
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NOTE VII (n° 7G, p. 60).

Mesure «le la  longitude en nier.

406. Mesure de l’heure en mer, pour déterm iner la longitude. — 
Les montres marines ou garde-temps sont construites avec un soin extrême, 
et peuvent garder leur régularité pendant quelque temps et malgré les se­
cousses d’un voyage sur mer. Elles fournissent donc à chaque instant au

marin l’heure du premier méridien ; 
et il lui suffit de mesurer l’heure 
qu’il est au même moment sur le 
vaisseau, pour en déduire la longi­
tude du lieu où il se trouve. Mais il 
ne peut évaluer cette heure, comme 
on le fait dans un observatoire, à l’aide 
d’une lunette méridienne. Il la déduit 
de la latitude X qu’il vient de calcu­
ler (note vi) et de la hauteur h d’un 
astre A placé loin du méridien, ob­
servé à l’aide du sextant, et dont les 
Tables astronomiques lui donnent la 
déclinaison (¾. En effet, dans le trian­

gle sphérique AZP (fig. 141), il connaît les trois côtés, ZP =  00° — X, ZA =  
00° — h, PA =  90° — (B ; et il peut calculer l’angle horaire ZPA =  11, par 
la formule

cos Z A =  cos ZP cos PA +  sin ZP sin PA cos ZPA,

ou sin h =  sin X sin (Q +  cos X dos B  cos H.

Connaissant l'angle H, il le transforme en temps, à raison d’une heure pour 
15°, c’est-à-dire de 4m pour 1°, et de 4* pour 1'. Il obtient ainsi le temps si­
déral qui doit s’écouler jusqu’au passage de l’astre au méridien du lieu, ou qui 
s’est écoulé depuis ce passage. Mais les tables lui donnent l’heure du pas­
sage de l’astre au méridien de Paris, et par conséquent l’heure du passage 
de l’astre à son méridien, puisque l’origine du jour sidéral est la même pour 
les deux lieux. Il ajoute ou il retranche à cette heure le temps calculé, et il 
obtient l’heure locale. Par exemple, d’après son calcul, un astre doit passer 
au méridien du lieu dans 3h 24“  35«, et d’après les tables, il est 48 25“ 38», 
lorsqu’il passe à un méridien quelconque. 11 sera donc 4*> 25“ 38», dans 
3h 24“ 3>" ; il n’est donc maintenant que 48 25“  38» — 3h 24“ 35», ou 
l k 1“ 3». Ài, au contraire, le même astre avait passé au méridien, il y a 
3h 24“ 35", comme à ce moment il était ll> 25“  38s, il est maintenant 
48 25“ 38» +  38 24“ 35», ou 78 50“ 13».

Tel est le procédé dont on se sert pour calculer l’heure en mer; le chrono­



mètre donne d’ailleurs l’heure de Paris à l’instant de l’observation, et la 
différence des heures donne la longitude.

On verra, ailleurs, comment les mouvements de la lune et des planètes, 
les éclipses des satellites fournissent des phénomènes propres à faire connaître 
les heures différentes que l’on compte an même instant sous deux méridiens 
différents ; et cette exposition complétera ce que nous avons à dire sur la 
détermination des longitudes.
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NOTE VIII (n° 84, p. 66).

Sur la forme elliptique du méridien,

497. Si l’on mesure la longueur l d’un arc de méridien dans le voisi­
nage du pOle, et le nombre n de degrés qu’il renferme, le rayon de cour­
bure p de la courbe méridienne dans cette région sera douné par la fur- 

180° lmule p = —— X  -• On obtient d’une manière analogue le rayon de courbure

p', dans le voisinage de l’équateur ; et l’on peut regarder p et p' comme les 
rayons de courbure ou pôle et à l’équateur. Or, dans l’ellipse, ces rayons sont

as 6»liés aux longueurs des demi-axes a et b par les relations p i p '=  — : on

en déduit immédiatement, a3=  p’p', 48 =  pp'*. Si donc le méridien est une 
ellipse, il est complètement connu, puisque ses axes sont déterminés. On peut 
donc évaluer analytiquement le rayon de courbure en un point quelconque, 
et le comparer à celui qui résulte de la mesure directe d’un degré en co 
point. C’est ce que l’on a fait pour les mesures prises en France. On a re­
connu ainsi que l’hypothèse présente un accord assez satisfaisant avec les 
faits.

NOTE IX (n° 101, p. 8i).

Démonstration «les théorèmes sur les projections 
stéréographiques.

498. Théorème I. — Tout cercle de la sphère a pour projection stéréo- 
graphique un autre cercle.

Pour le prouver, soient (fig. 142) O la sphère, ASB le tableau, V le point 
de vue, EGF le cercle donné ; je mène 01 perpendiculaire au plan de ce 
cercle, et par OV et 01 je fais passer un plan qui est perpendiculaire au
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tableau et au cercle EGF, et qui les coupe suivant les diamètres AB et EF;
soit EABF le grand cercle, in­
tersection de ce plan avec la 
sphère. Soient, en outre, C la 
perspective du point E , D 
celle du point F, et CMD celle 
du cercle EGF ; je veux prou­
ver que CMD est un cercle 
dont CD est le diamètre. En 
effet, si d'un point quelconque 
M de cette courbe on abaisse 
une perpendiculaire MP sur le 
diamètre CD, elle est perpen­
diculaire au plan EABF ; et si 
l’on mène par cette droite un 
plan parallèle à EGF, il coupe 

le cène VEF suivant un cercle HMK, dont HPK est le diamètre. Or MP est 
perpendiculaire sur ce diamètre ; donc

MP* =  HP X  PK. (1)
BV-4-FB 90°-t-FBMais l’angle E a pour mesure----^ ---- , o n ----------- , et l’angle PDK a pour

AV4-FB 90“ +  FB . . ,mesure ----- ----- > o u ------ -̂----; donc ces deux angles sont égaux. D ailleurs

l’angle E =  l’angle CHP : donc l’angle CIIP =  l’angle PDK ; de plus, les 
angles CPU, DPK sont égaux ; donc les triangles CPH, DPK sont semblables; 

PII PCdonc =  — v ou PH X PK =  PC X  PD. Donc l’égalité (I) devient
____ 9

ltlp" =  PC X  PD.
Donc M appartient à un cercle dont CD est le diamètre. C. Q. F. D.

Scolie. — Il y a exception pour les cercles dont les plans passent par le 
point de vue; ceux-là ont pour projections des lignes droites.

499. Théorème II . — St deux lignes courbes, tracées sur l’hémisphère, 
se coupent sous un certain angle, leurs projections stéréographiques se cou­
pen t sous le même angle.

Premier cas. Considérons d’abord le cas de deux grands cercles, AIB, 1GC, 
dont le premier contient l’axe optique. OV (fig. 143); leur angle est celui do 
leurs tangentes IT, 1T' au point I. La projection du point I est F ; celle de 
l’arc IA est la droite l'A, et celle de l’arc IG est l’arc l'G. La tangente 1T se 
projette sur l'T, et la tangente 1T', qui perce le tableau en T', se projette 
sur la droite l'T', tangente à l’arc l'G au point 1'. Il faut démontrer que l’angle 
T1T' =  l’angle T lT .

AI +  AVOr, l’angle TI1' a pour mesure 5 et l’angle TI7 a pour mesure
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■ ; donc ces deux angles sont égaux, et TI =  TI'. D’un autre côté, le

plan TIT' est perpendiculaire au rayon 01, et par suite au plan A1B; le ta­
bleau AGB est aussi perpendiculaire au plan AIB, puisque ce dernier centient

Taxe optique OV ; leur intersection TT' est donc perpendiculaire à ce plan, 
et par conséquent aux droites TI, Tl', qui passent par son pied dans ce plan. 
Ainsi les deux triangles ITT', 
l'TT', ont chacun un angle 
droit au point T, compris en­
tre deux côtés égaux, et sont 
é gaux ; donc les angles TIT,
T IT , sont égaux. C. Q. F. D.

Deuxième cas. Considérons 
maintenant deux grands cer- ® 
clés quelconques 1GC, 1K.C 
(fig. 144) ; on peut toujours 
mener par leur diamètre com­
mun IC, et par Taxe OV, un 
plan qui détermine le grand 
cercle AIBV. Or le théorème 
est vrai (1“  cas) pour les an­
gles que ce grand cercle fait avec chacun des deux premiers ; donc il est 
vrai aussi pour l’angle G1K, qui est leur somme ou leur différence. Ainsi, 
dans la figure 144, l’angle AIG=ATG, et l’angle AIK =  A1'K; donc!

Fig. 144.
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AIG AIK — AI'G +  AI'K, ou GIK =  G1'K.

T roisièm e cas. C o n s id é r o n s  e n f in  d e u x  p e t i t s  c e r c le s ,  o u  d e u x  c o u r b e s  

q u e l c o n q u e s  t r a c é e s  s u r  l a  s p h è r e  : o n  p e u t ,  p a r  c h a q u e  t a n g e n t e  a u  p o iu t  

c o m m u n  e t  p a r  le  c e n t r e ,  m e n e r  d e u x  g r a n d s  c e r c l e s ,  p o u r  l e s q u e ls  l e  th é o ­

r è m e  e s t  v r a i .  O r  le s  t a n g e n t e s  s o n t  le s  m ê m e s  p o u r  le s  d e u x  c o u r b e s  e t  p o u r  

le s  d e u x  c e r c l e s ;  l e u r  a n g le  e s t  d o n c  le  m ô m e ;  i l  e n  e s t  d e  m ô m e  d e  l ’a n g le  

d e  l e u r s  p r o je c t i o n s .  D o n c  le  t h é o r è m e  e s t  g é n é r a l .

C o r o l l a i r e .  —  Les fig u res in fin im en t p e tite s , tracées su r  la  sphère, se 
p ro je tten t su iv a n t des figures sem blab les. C a r  u n  t r i a n g l e  e t  s a  p r o je c t i o n  

o n t  l e u r s  a n g l e s  é g a u x ,  e t  s o n t  s e m b la b le s  ; p a r  s u i t e ,  l e s  p o ly g o n e s  e t  l e u r s  

p r o j e c t i o n s  s o n t  c o m p o s é s  d e  t r i a n g l e s  s e m b l a b le s ,  e t  s o n t  s e m b la b le s .

5 0 0 .  T h é o r è m e  I I I .  —  Le. centre  
de la pro jection  stéréographigue d ’un  
cercle de  la  sphère est la  pro jection  
d u  som m et d u  cône c irconscrit à es  
cercle.

S o i t  A V B D  (fig . 145) l e  g r a n d  c e r ­

c le  d ’i n t e r s e c t i o n  d e  l a  s p h è r e  a v e c  

u n  p l a n  m e n é  p a r  l ’a x e  o p t i q u e  V O  

p e r p e n d i c u l a i r e m e n t  a u  c e rc le  d o n t  

i l  s ’a g i t  ; s o i e n t  C D  le  d i a m è t r e  d e  c e  

c e r c l e ,  e t  A B  l e  d i a m è t r e  d u  t a b l e a u ,  

s i t u é s  d a n s  le  p l a n  s é c a n t .  L e s  t a n ­

g e n t e s  C S , D S  d é t e r m i n e n t  l e  s o m ­

m e t  S  d u  c ô n e  c i r c o n s c r i t  ; e t  le s  

p r o j e c t i o n s  d e s  t r o i s  p o in t s  C , S ,  D , 

s o n t  C ',  S ',  D ’. A in s i  le  c e r c l e  C D  a  p o u r  p r o j e c t i o n  u n  c e r c l e  d o n t  C 'D ' e s t  le  

d i a m è t r e  ( T h .  I ) ;  e t  i l  s ’a g i t  d e  d é m o n t r e r  q u e  le  p o i n t  S ' e s t  l e  c e n t r e ,  

c ’e s t - à - d i r e  q u e  C 'S ' =  S 'D '.

O r ,  le s  d e u x  t r i a n g l e s  S C H , S C V  s o n t  s e m b la b le s  ; c a r  l ’a n g l e  S  e s t  c o m ­

m u n ,  e t  l ’a n g le  S C H  e s t  é g a l  à  l ’a n g le  C V S  c o m m e  a y a n t  m ô m e  m e s u r e  ; d o n c  

C H  C S
—ry- =  —  • P a r  l a  m ô m e  r a i s o n ,  le s  d e u x  t r i a n g l e s  S D H , S D V  d o n n e n t  : 
C  V V b

D H  D S
—  =  ; e t  c o m m e  C S  =  D S , i l  y  a  u n  r a p p o r t  c o m m u n ,  e t  l ’o n  a  :

C i l  D H
C V  D V C)

A V  -1- AC
D ’u n  a u t r e  c ô t é ,  l ’a n g le  C H V  a  p o u r  m e s u r e  — ^ — 1 e t  l ’a n g l e  V C 'S  

; c e s  d e u x  a n g le s  s o n t  d o n c  é g a u x ,  e t  le s  t r i a n g le s  H C V , C 'V S ' s o n t

s e m b l a b le s  ; o n  a  d o n c  :

C H  _  f / S '

c v  ~  b'v ’
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Par la même raison,
PII D'S'
DV ~  S'V ’

dans les triangles semblables HDY, D'VS'. Or, d’après (I), les premiers rap­
ports de ces deux égalités sont égaux ; donc

CS' _  CS'
S V ~  S'V ’

et, par conséquent, C'S' =  S'D'. C. Q. F. D.

NOTE X (u° 112, p. 90).

Détails sur les cartes géographiques.

SOI. Développement conique. — Nous avons indiqué dans le texte (n° 10G, 
page 86), le procédé suivre pour construire une carte en développement 
conique. Il est facile d’appliquer le calcul à cette question. Car si l’on se 
reporte à la fig. 38 (p. 85), on voit qu’en prenant pour unité le rayon TA, 
et en désignant par X la latitude du parallèle moyen, le triangle STA donne : 

SA =  TA tang STA,

ou SA =  su =  cot X j (1)

c’est le rayon avec lequel il faut décrire l’arc du parallèle moyen sur la carte.

Puis le triangle SM,K donne SM, =  co, v) iSk ‘ ®r’ cos MiSK =  cos et 
SK =  ST — TK =  coséc X — sin X’,  eu désignant par X' la latitude du pa­
rallèle MM' ; donc

S.M, =  sm coséc X — sin X' , 
cos X ’ ( 2)

c’est le rayon d’un parallèle quelconque MM' dans le développement. Enfin, 
si l’on désigne par 9 l’angle asi d’un méridien quelconque avec sa sur h. 
carte, angle évalué en degrés, on a pour longueur de ai, 

tc. sa. f  tc. cot X. 9
a l = —Ï5Ô 180 ’

Or, sur la sphère, en 
méridien PA, on a :

appelant l la longitude du méridien PI par rapport au

A, =  Ev x 4 5  =  i i c o s X.

liais ai — AI, donc :
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TT. COt.),. 9  __ 7C. I
TÏÏô 180 CCS ),,

d’où 9 =  / sic (5)

formule qui donne la direction d’un méridien quelconque sur le développe­
ment. Ces trois formules permettent évidemment de construire le réseau des 
parallèles et des méridiens.

502. Développement de Flamsteed. — Flamsteed a employé un autre 
développement. Dans ce système, les divers parallèles sont représentés par 
des droites parallèles entre elles, dont les distances sont égales aux diffé­
rences de leurs latitudes. Le méridien moyen est une droite perpendiculaire 
à ces droites. Quant aux autres méridiens, ce sont des lignes courbes dont 
nous allons Indiquer la construction par points.

Supposons, pour fixer les idées, que les parallèles et les méridiens soient 
distants les uns des autres d’un degré sur la sphère. Soient (fig. 146) GG' le 
méridien moyen, et AB, A'B', A"B"..... . les parallèles équidistants d’un de­
gré. Pour construire le méridien incliné d’un degré à lest sur le méridien

Fig. 14G.

moyen, on porte, sur chacun des parallèles, des distances ab, a'b', a"b", etc., 
égales en longueur aux arcs d’un degré mesurés sur les parallèles sphériques 
correspondants. Ces longueurs vont en diminuant à mesure que la latitude 
augmente, parce que les rayons des parallèles diminuent ; et elles deviennent 
milles par la latitude ). =  90°. Puis on joint les points b, b', b" ...., par un 
trait continu qui représente le méridien cherché. Le méridien incliné de 2° 
s’obtient en prenant chaque longueur double de la longueur précédente, 
et ainsi de suite ; et tous ces méridiens vont rencontrer la droite GG' au 
même point correspondant à X =  90°.

Le calcul donne facilement l’équation d’un méridien quelconque bb'b'\ 
rapporté aux axes aG et uB. Car, soit l  la longitude de ce méridien, comptée
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fl partir de GG', et évaluée eu degiés de grand cercle ; et soit X la latitude 
du parallèle AD, à partir duquel on construit la cartes soit A'B' un parallèle 
dont la latitude est X'. Posons au' =  x , a'b' —- y ; nous aurons :

x  —  X' — X, y =  l X cos X' ;
car les arcs d’un degré sur chaque parallèle sont, en longueur, propor­
tionnels à leurs rayons, et par suite aux cosinus de leur latitude. On tire de 
là, en éliminant X',

y — l cos (X -H ar). (t).
C’est l’équation du méridien ; elle sert à le construire, dès que l’on a adopté 
une certaine longueur pour valeur du degré.

H05. Carte de France.— On peut aussi appliquer le calcul à cette construc­
tion. Pour cela, on remarque que SA =  cotang 45° =  1 (fig. 41, p. 88). Ainsi le 
rayon du parallèle moyen est pris pour unité. Le rayon d’un parallèle quel­
conque de la carte, correspondant au parallèle MM' dont la latitude est X, est 
SA — AM, =  1 — AM. Or AM est la longueur de l’arc (X — 45°;, comptée sur
le cercle de rayon l, c’est-à-dire |̂t.||u<'* 1 ■ Ainsi

, , X —45»sa' =  1 — tc-------- ••
180 °

Soit l la longitude du méridien qu’on veut construire, prise par rapport au 
méridien moyen ; pour avoir le point b' de ce méridien qui se trouve sur alu! ,, 
dont la latitude est X, on remarque que l’arc a'b' est égal en longueur

7C l(n° 501) à —— cos X ; cette expression servira donc à trouver ce point.loi)
Eu réalité, les parallèles ont des rayons extrêmement grands ; leurs centres 

sont hors de la carte, et l’on ne peut les construire avec le compas. Il faut les 
tracer par points. Pour cela (fig. 42, p. 88), on prend pour axes la tangente ay 
au parallèle moyen et le méridien moyen ax. Soit 6' un point, qui, sur la 
sphère, a une longitude L et une latitude X ; posons ap =  x, pb' =  y.
On a x  =  sa — sp =  1 — sa' cos a's b'.

X_450
Or sa' =  1 — x ——-----, et l’angle a’si/, étant mesuré par l’arc intercepté

180 °

a'b'entre ses côtés sur le cercle de rayon 1 , c’est-à-dire par —v , ou par
sa'

t. L cos X i j t-------------- ---------- — » sa valeur en degrés est :

_____ n i  cos X_____  180° l cos X
. „„ / , X — 46“ \  X tc ’ °U , X —■ 45° ’
180 1 - ? - Î 8F -

donc. * =  -  ( t - « - ï g ô T - )  X c o s ------- T=TT°- (5)
1 K 180°
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Déplu?. y — /  sin a'si',

( ,  X— 45°\ . /cosX ...
ou * “ ( »  - * - w )  X « n  ----------m

11 18ü"

Ces deux formules permettront de construire un point quelconque de la carte. 
On e» déduira l’équation du parallèle, en éliminant l, et celle du méridien, 
en éliminant X.

Dans ce système, d’ailleurs, les méridiens sont perpendiculaires au paral­
lèle moyen, et i  très-peu près perpendiculaires aux autres : c’est le but qu’on 
se proposait.

S04. Cartes marines ; développement de Mercator. — Nous termine­
rons cet exposé par quelques mots sur le mode de développement de Mercator. 
Dans ce système, les méridiens et les parallèles sont représentés par deux 
séries de droites perpendiculaires entre elles. Les méridiens, qui forment 
l’une des séries, sont séparés les uns des autres sur la carte par les mêmes 
distances que celles qui séparent, à l’équateur, les méridiens terrestres ; 
comme si l’on avait circonscrit un cylindre à la terre, le long de l’équateur, 
qu’on eût coupé ce cylindre par les plans de divers méridiens, et qu’on l’eût 
développé ensuite sur un plan. Quant aux parallèles qui forment la seconde 
série de droites, leurs distances à l’équateur ne sont pas mesurées par leurs 
latitudes : elles croissent plus rapidement, d’après cette condition, que : deux 
lignes quelconques, tracées sur la carte, se coupent sous le même angle que 
les deux courbes sphériques qu'elles représentent.

Nous ne pouvons pas exposer ici comment le calcul intégral détermine la 
formule qui remplit cette condition ; cette formule est :

3 =  o. log tang ^ 45» +  ^  : (7)

a représente la longueur de l’arc de l’équateur correspondant à l’unité d’angle, 
et S est la distance à l’équateur du parallèle qui a pour latitude X. Il sera

facile de construire, à l’aide de 
cette formule, le réseau des mé­
ridiens et des parallèles de la 

î» carte. Car on tracera (fig. 147)
________________________________ ! une droite indéfinie EE' pour re­

présenter l’équateur -, et, après 
? _________________avoir choisi la longueur a qui

------------------------ï» ; doit représenter l’arc d’un de-
~  i° |?  h” lô» tï* t»“ Is» E gré, on mènera des perpendicu- 

Fi»\ 147. laires à EE', distantes entre elles
. de la quantité a : c’est la série

des méridiens. Pour construire les parallèles consécutifs distants d’un degré 
les uns des autres, on donnera à X dans la formule les valeurs successives 
1», 2°, 3°, etc., etc., et l’on portera les valeurs correspondantes de S sur l’un



des méridiens ; puis on mènera, par les extrémités de ces longueurs, des pa­
rallèles à EE' : ce seront les parallèles de la carte.

805. Usage des cartes marines. — C’est d’après ce système que sont 
construites les cartes marines, il est facile de comprendre l’avantage qu’elles 
présentent. Car, en mer, on ne connaît aisément que la direction du méri­
dien du lieu où l’on se trouve, direction indiquée par la boussole ; c’est donc 
aux méridiens successifs que l’on traverse qu’il faut rapporter la direction 
à suivre pour aller d’un point à un autre. Or, si l’on voulait suivre le chemin 
le plus court, c’est-à-dire l’arc de grand cercle qui joint les deux points, 
comme cet arc fait des angles différents avec les divers méridiens, il faudrait 
calculer ces angles à l’avance ; et si le vaisseau déviait un peu dans sa course 
de l’arc qu’il devait suivre, ce qui est inévitable, un nouveau calcul devien­
drait nécessaire pour déterminer la nouvelle route du navire. C’est là une 
difficulté que l’on évite par l’emploi des cartes de Mercator. En effet, les 
marins, au lieu de suivre l’arc de grand cercle, suivent la courbe qui coupe 
tous les méridiens sous le même angle. Or, sur leur carte, cette courbe est 
évidemment représentée par la droite qui joint le point de départ au point 
d’arrivée, puisque les méridiens sont des droites parallèles entre elles. Il leur 
est donc extrêmement facile, en traçant cette droite à l’avance, de détermi­
ner, une fois pour toutes, l’angle sous lequel ils doivent traverser tous les 
méridiens : c’est cet angle qui détermine la direction à suivre à chaque in­
stant. On le donne au pilote, qui, par l’observation constante de la boussole, 
maintient la direction du vaisseau sous cet angle constant avec les méridiens 
successifs. Cependant, comme le navire peut être dévié de sa route par les 
courants, on a soin de déterminer de temps à autre la position où l’on se 
trouve, par les procédés que nous avons décrits, et de chercher sur la carte 
le nouvel angle régulateur.

806. Loxodromie. — La ligne qui, sur la sphère, coupe tous les méridiens 
sous un même angle, e£t une espèce de spirale à double courbure qu’on ap­
pelle la loxodromie. Sa projection stéréograpbique sur le plan de l’équateur 
est une spirale logarithmique ; car, d’après le théorème II des projections 
stéréographiques (n° 490), la projection de la loxodromie fera le même angle 
avec les projections des méridiens, c’est-à-dire avec ses rayons vecteurs.

C’est le développement de Mercator qu’on emploie quelquefois pour con­
struire la carte de la zone céleste équatoriale ou de la zone zodiacale.
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NOTE XI (n° 113, p. 00).

D e l ’atmosphère terrestre et des réfractions atmosphé­
riques.

S07. Constitution de l’atmosphère. — L’atmosphère est un fluide gazeux 
qui enveloppe la terre. Elle est un mélange d’oxygène et d’azote, dans la 
proportion de 21 à 79 en volume; elle contient, en outre, de l’eau en va­
peur, et quelques traces d’acide carbonique. Elle a les propriétés des fluides 
élastiques : sa densité et son élasticité diminuent, à mesure qu’on s’éloigne 
de la surface de la terre. On comprend, eu effet, que, l’air étant pesant, les 
couches inférieures sont plus comprimées que celles qui sont au dessus 
d’elles, dont elles supportent le poids, et doivent être plus denses qu’elles. 
Les dernières couches doivent être excessivement rares, et l'élasticité doit 
y être nulle ; s’il en était autrement, ces couches tendraient à se dissiper 
dans l’espace. La température de l’atmosphère va en diminuant d’un degré 
par 150 ou 200m d’élévation, du moins jusqu’à une hauteur de 7000 mètres 
environ.

L’atmosphère participe au mouvement de rotation de la terre sur son axe, 
et elle est entraînée avec elle dans son mouvement de translation autour du 
soleil.

800. Poids de l’atmosphère. — On démontre en physique que la pression 
atmosphérique fait équilibre à une colonne de mercure de 0“ ,76, ou à une 
colonne d’eau de 10“ ,'134. Le poids total de l’atmosphère est donc égal à 
celui d’une colonne d’eau qui aurait pour base la surface du globe, OU 471)'*, 
et pour hauteur !0“ ,334. Comme un mètre cube d’eau pèse 1000 kilogrammes, 
le poids total sera de énr* X  10,334 X  1000 ou 4ti>s X  10334 en kilogrammes. 
Or, r =6300198“ . Donc le poids de l’atmosphère est de 52630G32105600000CO 
kilogrammes, nombre si grand qu’il nous est impossible de nous en faire une 
idée nette. Chaque homme, d’après MM. Dumas et Boussingault, consomme 
par jour 1 kilogr. d’oxygène dans l’acte de la respiration ; il y a 1000000000 
d’habitants sur la terre ; cela fait 1000000000 de kilog. d’oxygène par jour, 
ou 305250000000 de kilogrammes par an, ou enfin 36525000000000 de ki­
logrammes par siècle. Mais l’atmosphère contient près du quart de son poids 
d’oxygène, '.’est-à-dire, 1300000000000000000 kilogrammes environ. Cette 
quantité suffirait donc pour faire vivre l’humanité tout entière pendant plus 
de 36000 siècles. Mais, dans l’ordre de choses admirable établi par la Pro­
vidence, la respiration des plantes absorbe l’ucide carbonique produit par 
1 homme, et restitue à chaque instant à l’atmosphère l’oxygène consommé 
par lui. C est ainsi que la composition de l’atmosphère reste sensiblement 
constante.

800. Hauteur de 1 atmosphère, — Quelle est la hauteur de l’atmosphère P
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Si ce fluide était homogène, si sa densité était la même partout, la réponse 
serait facile ; car, d’après les lois de la physique, les hauteurs de deux fluides 
qui exercent la même pression étant en raison inverse de leurs densités, et 
ie mercure étant 10462 fois plus dense que l’air, on aurait :

1 =  0",76 X  10462 =  7951 = ,12.

Telle serait la hauteur de l’atmosphère, mais ce n’est là qu’une limite infé­
rieure, puisque la densité va diminuant progressivement. üne discussion ap­
profondie des observations faites par Gay-Lussac dans son célèbre voyage aéro­
statique de 1801, et de celles faites, à l’équateur, par de Humboldt et par 
M. Boussinyault, a conduit Biot à admettre que la hauteur de l’atmosphère 
ne peut dépasser 18000 mètres ou 12 lieues. Or, le rayon de la terre vaut à 
peu près 6360000 mètres ; donc la hauteur de l’atmosphère n’est guère que 
ja cent-trentième partie de ce rayon. Ainsi le duvet dont une pêche est re­
couverte occupe sur le fruit une place proportionnellement plus grande que 
celle qu’occupe toute l’atmo­
sphère sur la surface terrestre.

sio. Extinction de la lu­
mière par l’atmosphère. —
L’atmosphère est imparfaitement 
transparente ; elle éteint une par­
tie des rayons qui la traversent.
Cette extinction, faible pour les 
rayons verticaux, augmente avec 
leur distance zénithale, parce 
que l’épaisseur de la couche at­
mosphérique qu’ils traversent 
croit à mesure qu’ils s’inclinent 
sur l’horizon. Soient (fig. 148) T 
la terre, TA son rayon, AI la 
hauteur de l’atmosphère ; le rayon 
qui vient du zénith Z parcourt, 
dans l’air, la distance IA ; celui 
qui vient de l’horizon H parcourt la distance AA. Or les propriétés élémen­
taire du cercle donnent AA2 =  AJ X  AL, ou en désignant par r et par A le 
rayon TA et la hauteur AI ou kL,

AÂ* =  (2r +  A)A.

D’ailleurs, h =  ^  r  ;  donc ÏÂ1 =  (2  +  X  »*,

d’où AA =  ' - \ / ( 2 +  T i j ) x 7 i ( 5 = - T ? = T f o -

Ainsi AA vaut environ 16 fois AI. L’extinction, dans le sens horizontal, doit
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donc être beaucoup plus considérable que dans le sons vertical. C’est pour 
cela qu’à l’horizon on peut regarder le soleil sans être ébloui. Cet affaiblis­
sement de la lumière et de la chaleur solaire est encore augmenté par les 
vapeurs opaques qui existent toujours dans les régions inférieures de l’at­
mosphère.

Stl. Couleur de l'atmosphère, lumière diffuse. — D’un autre côté, les 
molécules de l’air réfléchissent la lumière en tout sens; mais comme elles 
sont très-petites et très-écartées les unes des autres, on ne peut les apercevoir 
que lorsqu’elles sont réunies en grande masse. L’impression qu’elles produi­
sent alors est celle de la couleur bleue, parce que ce sont les rayons bleus 
qu’elles réfléchissent en plus grande quantité. Dn rayon lumineux n’arrive 
donc à notre œil qu’après avoir subi des réflexions multipliées. C’est là ce 
qui produit la lumière diffuse qui nous éclaire, même lorsque nous ne rece­
vons pas les rayons directs du soleil.

« Si l’atmosphère n’existait pas, chaque point de la surface terrestre ne 
« recevrait d’autre lumière que celle qui lui viendrait directement du soleil, 
a Quand on cesserait de regarder cet astre on les objets éclairés par ses 
a rayons, on se trouverait aussitôt dans les ténèbres. Les rayons solaires, 
« réfléchis par la terre, iraient se perdre dans l’espace, et l’on éprouverait 
c toujours un froid excessif. Le soleil, quoique très-près de l’horizon, bi-il- 
o lerait de toute sa lumière ; et, immédiatement après son coucher, nous se- 
o rions plongés dans une obscurité absolue. Le matin, lorsque cet astre 
« reparaîtrait sur l’horizon, le jour succéderait à la nuit avec la même ra- 
c pidité (I). r

812. Forme surbaissée de la voûte céleste. — C’est à ces propriétés 
qu’il faut attribuer la forme très-surbaissée que nous présente la voûte céleste: 
car le segment sphérique, que l’horizon détache de l’atmosphère au-dessus de 
nos têtes, a un rayon IG fois au moins plus grand que sa hauteur (n° 510) ; par 
conséquent, les molécules d’air qui réfléchissent la lumière qu’elles reçoivent 
s’étendent beaucoup plus loin de nous à l’horizon qu’au zénith ; et l’œil, au­
quel ces rayons arrivent, doit juger la distance plus grande dans un sens 
que dans l’autre. De plus, lorsque nous regardons les objets terrestres éloi­
gnés de nous, comme les hautes montagnes, nous ne les voyons qu’à travers 
une couihe épaisso d’air qui en affaiblit l’éclat, et qui leur donne une teinte 
bleuâtre d’après laquelle nous sommes habitués à en estimer la distance. Or 
ces circonstances se présentent également pour les astres à l'horizon, et dis­
paraissent à mesure qu’ils s’élèvent; nous sommes donc amenés à les juger de 
même plus éloignés de nous dans la première position que dans la seconde.

813. Lois générales de la réfraction. — Lorsqu’un rayon lumineux tra­
verse un espace vide de toute matière pondérable ou un milieu homogène 
quelconque, sa direction est rectiligne. Mais, lorsqu’il passe d’un milieu 
homogène dans un autre de densité différente, ou même du vide dans un

(1) Biot, A stro n o m ie physique, t. I.
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milieu, ou encore d’un milieu dans le vide, il est dévié de sa direction primi­
tive ; et il obéit, en cette circonstance, aux deux lois générales suivantes, que 
l’on démontre dans les cours de physique.

Soit TT'la surface de séparation des deux milieux (fig. 149), et soit I le point 
où le rayon incident SI rencontre 
cette surface j menons un plan tangent 
III au point J, et la normale N1N' en 
ce point ; soit enfin IR le rayon ré­
fracté, c’est-à-dire la direction nou­
velle du rayon dévié.

1° Le rayon incident SI et le rayon 
réfracté IR sont tous deux compris 
dans un même plan, contenant la 
normale NN', et par conséquent aussi 
normal à la surface, au point d’in­
cidence I.

2° Le rapport du sinus de l’angle 
d’incidence S1N au sinus de l’angle de 
réfraction N1R est, pour toutes les in­
cidences, un nombre constant qui ne 
dépend que de la nature des deux milieux et de leur densité relative. Quand 
le rayon passe d’un milieu dans un milieu plus dense de même nature, il se 
rapproche de la normale ; il s’pn éloigne dans le cas contraire. Le rapport 
constant des deux sinus s’appelle l’indice de réfraction du second milieu par 
rapport au premier.

Si le rayon passe du vide dans un milieu M, le rapport n se nomme Vindice 
de réfraction absolu du milieu. La puissance réfractive du milieu est n* — 1 ;

n* — 1«lie est proportionnelle à la densité p du milieu ; et le rapport K =  — -—  est 
le pouvoir réfringent. On tire de cette définition: 

n =  y  1 -f- Ko.
Si les indices absolus de deux milieux M, et Ms sont n, et n2, l’expérience 

prouve que, quand la lumière passe du premier milieu dans le second, l’an—

dice de réfraction relatif est n — ^  . On a donc :

V ' î +  Kj f j  
n -- ----------------

+ Kjpi
Si les deux milieux sont composés d’un même gaz ou d’un mélange de gaz 
ayant la même composition, K est le même pour les deux, et alors on a :

y '  i +  k Ps
n -- ----------------. -

V  1 +  KPl
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BU. Réfraction atmosphérique. — Pour appliquer ces lois à la déviation
des rayons lumineux dans 
l’atmosphère,considérons d’a­
bord ce fluide comme com­
posé d’un certain nombre de 
couches homogènes concen­
triques, pour lesquelles la 
densité va croissant depuis la 
couche la plus éloignée ju s ­
qu’à celle qui touche le sol. 
Le rayon sera rectiligne dans 
l’intérieur de chaque couche, 
et il se réfractera, en se rap­
prochant de la normale, cha­
que fois qu’il passera d’une 
couche à la suivante. Ainsi, 
soient (fig. 150) : TT' la sur­
face de la terre, et AA', BB', 
CC', DD', les surfaces de sé­
paration des couches succes­
sives. Soit SI un rayon qui, 

parti d’un point lumineux S, rencontre en I la première couche atmosphé­
rique ; menons par ce 
rayon et par la normale 
OI un plan qui coupe la 
terre et les surfaces de 
séparation, suivant les 
cercles TT', AA', etc. Le 
rayon réfracté sera dans 
ce plan, et aura la direc­
tion IJ plus voisine de la 
normale. En J, nouvelle 
déviation qui le rappro­
che de lu normale OJ, et 
lui fait prendre la direc­
tion JK. Il en sera de 
môme en K, puis en L. 
Ainsi, le rayon subira 
une série de réfractions 
dans le môme sens, et 
ses directions successi­
ves formeront un poly­

gone IJ KLM, concave vers la terre, tout enlier compris dans le plan nor­
mal SOI.
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Mais la densité de l’atmosphère ne varie pas, en approchant de la terre, 
par intermittences brusques; elle croit par degrés insensibles. Il faut donc 
considérer chaque couche homogène comme ayant une épaisseur infiniment 
petite ; par suite, lo polygone, composé d’un nombre infini de côtés infini­
ment petits, est une courbe concave vers la surface terrestre, comme la re­
présente la fig. 151.

515. Effets de la réfraction atmosphérique. — Lorsque le rayon lumi­
neux SI arrive en M à la surface de la terre, l’œil placé en ce point le reçoit 
suivant sa dernière direction, c’est-à-dire suivant le dernier côté du polygone 
infinitésimal, c’est-à-dire encore suivant la tangente en M à la courbe MI. Et 
comme nous supposons toujours les objets sur la direction des rayons lumi­
neux que nous en recevons, l’œil juge que l’astre S est en S'. Si l’on mesure 
sa distance zénithale apparente, on la trouve égale à ZMS', tandis que sa 
distance zénithale vraie, telle qu'on l’observerait si l’atmosphère n’existait 
pas, est ZMS, MS étant parallèle à IS. Ainsi, la distance zénithale apparente 
est plus petite que la distance zénithale vraie. C’est la différence SMS’ que 
l’on nomme la réfraction astronomique ou atmosphérique.

On comprend, d’après ce qui précède, que l’effet de la réfraction est de 
faire voir les astres plus élevés an-dessus de l’horizon qu’ils ne le sont réel­
lement. Elle augmente leur hauteur, elle accélère leur lever et retarde leur 
coucher ; mais elle ne change pas le vertical dans lequel ils se trouvent. Ainsi, 
lorsqu’on les voit passer au méridien, ils sont réellement dans ce plan. La ré­
fraction n’altère donc ni l’azimut de l’astre, ni l’heure de son passage au fil . 
de la lunette méridienne, ni, par conséquent, son ascension droite ; mais elle 
affecte la déclinaison et la distance polaire, dont la valeur dépend de la hau­
teur méridienne.

516. Calcul de la déviation infiniment petite du rayon lumineux en 
passant d’une couche à l’autre. — Considérons trois poiuts, J, K, L(fig. 150), 
du rayon réfracté, situés sur trois circonférences consécutives; supposons que 
les couches CBC’B', ABA'B', sont homogènes ; et soient p et p, leurs densités. 
Représentons par f et i t les angles d'incidence aux points K et L, et désignons 
par K le pouvoir réfringent de l’atmosphère. L'indice de réfraction au point K

sin i  .  ,est ——;— ■ — i et par conséquent on a : sm OKL
sin i t ^ l + K p t  

siu O K L - ^ ' j —

Posons OK =  r, OL =  r , ; le triangle OLK donne : 
sin OKL r,

sin t\ r  ' '
Multiplions ces deux égalités membre à membre,il vient i

sin ï 1 +  Kpi ----------
--------- ---------, ou r  sin i v  1 -j- Ko =  ri sin ?i v  1-f-Kpj.sm i /  . . v1 r V  1 ■+ Kp
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Ainsi le produit r  sin i V  1 +  Kp est constant, quand on passe d’une couche 
A l’autre. Donc, si l’on représente par r , le rayon de la terre, par p0 la densité 
de la couche atmosphérique qui touche le sol, et par Z le dernier angle d'in­
cidence ZML, qui'n’est autre que la distance zinithale apparente, on aura :

r s i n t i /  l -j- Kp =  r0 sin Z | /  t+ K p 0. (3)

Cela posé, représentons par d0 la déviation du rayon lumineux quand il 
passe en K d’une couche dans l’autre, c’est-à-dire l’angle infiniment petit 
compris entre JK et le prolongement de LK, angle qui mesure la réfraction 
au point K. Soit KOL == du, et soit t — i t =  dû On voit aisément que l’on a:

dO =  i — OKL ; or OKL =  r i — du ; donc dO =  I — +  du, on

dO =  d i+ d u .  (4)

Or, si l’on considère la courbe IJKLM comme rapportée à des coordonnées 
polaires (O étant le pèle et OZ l’axe polaire), l’angle i  est l’angle qne la tan­
gente à la courbe, au point K, fait avec le rayon vecteur r ;  donc, d’après une

formule connue, tang t =  ) d’où du =  ---- . Substituant cette va­
ri r  r

leur dans la formule (4), il vient :

d0=,d t +  tang,,d:  =  ’~COS!'d/ +  sin,'dl ,  ou dO =  l £ î ^ l  (5) uv ~  r r cos i r cos i

Or la formule (3) donne :

rnsinZ k-T T ÏÏ?o  , , ■ V (l+¥p)- £ (1 + Kp0>Sin,Z,■ sin ; =  — ; d où r c o s t= -------------- , - -------------
v  i + K p  y  i +  Kp

..............  Kr0 sin T . \ /  1 +  Kp0 J
Puis d(>-sint) = --------- 2 U + K w f ----- dPi

K ’j  sin z ^ l - t -  Kpo dpr a

donc dO =  —  ------------ ---------------------- - • (G)

2 ( 1 + K p ) y /  i +  Kp — ( l +  Kp0) sil1* z

Telle est l’expression de la déviation infiniment petite du rayon lumineux, 
lorsqu’il a traversé la couche infiniment mince dont la densité est p. Pour 
obtenir la réfraction astronomique, c'est-à-dire l’angle SMS', il faudrait in­
tégrer cette expression entre les limites p0 et 0, qui sont les densités des 
couches inférieures et supérieures de l’atmosphère. Mais il faudrait pour cela 
connaître la loi suivant laquelle la densité décroît à mesure que la hauteur 
augmente, et cette loi n’est pas connue, il faut donc recourir au développe­
ment de l’expression (0) en série convergente.
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»17. Développement de la déviation en série convergente ; valeur 
de la réfraction. — On pose :

— = 1 — *, et —■ —- — a ; d’où K — — 2 “y -  ; 0)r 2 (1 + K p 0) p0 1 — 2a ’

et l'on remarque que s est une quantité très-petite; car la hauteur de l’at­
mosphère est une très-petite fraction du rayon de la terre. On voit aussi que 
a est très-petit; car le pouvoir réfringent K de l’atmosphère est très-faible. 
L’expression de dO devient alors :

— .  --------- ( I — s) sm Z —-------- - dp
l —  ‘

dO = --------------------------------------------------------------------------

2 ( 1 + 1 -. t À + l . - l ! ------ ——— sin2 Z. \  p0 1 — 2a /  V p0 1 — 2a 1 — 2a

ou, multipliant les deux termes par (1 — 2a) 1 — 2a, et les divisant par
cos Z,

— a tang Z (1 — s) dp
Po

dO ==---------------------- --------------------------------------------------------------- ,

1 ,_aa(‘“S )Vi ‘- K > - Py  i •-w
expression que l’on peut écrire :

d0 =  — atangZ (1 —s) — j l - 2 a ( l —1 )  I —1 S 1 — 2 [a(1 — £-) (l+ tan g 2Z) 
Po [ Po 1 ( Po

—  ( *  — j l t a n g ’ Z J  J  * ‘

Développant les deux derniers facteurs par la formule du binôme, il vient 

dO =  - « t a n g Z ( , - ^ j , + 2 a ( l - l ) + 4 a l ( , - l ) î + . . . j  

X  j 1 + a  (1 — ^-) (1 +  tang’ Z) — (s — ^ s*) tang* Z +  ... j .

Si l’on effectue le produit, en négligeant les quantités du 3« ordre dans le

coefficient de — > on trouve :
Po

dO =  — a tang Z — j 1 +  a (1 — 1 )  (3 + tang»Z) — s (I +  tang’ Z) j ;
Po I Po 1

e t l’intégration donne :

6 =  a tang Z ( 1 +  — (3 +  tang2 Z) +  (1 +  tang2 Z) J*  ̂  -^1 j • (8)
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Si l’on veut tenir compte du 3« ordre, la correction à faire à 6 est la sui­
vante :

J0 =  a3^ tan g Z  +  jtangSZ-|-|tang5z j +  3a* ^tangZ+2tang3Z +tang5Z^

x f° (1 -  £) ■?~ r- ( ^ + ^ )  f  $  • o)
Po Po

sis. Calcul des intégrales des formules précédentes ; formules de la 
réfraction et de sa correction. — Pour obtenir les intégrales qui figurent 
dans ces formules, on introduit d’autres variables. Désignons par p  la pres­
sion atmosphérique et par g la gravité sur la surface dont le rayon est r , et 
par po et g0 leurs valeurs à la surface de la terre. Soit en outre l la hauteur 
d’une colonne d’air, de densité constante p0, qui ferait équilibre à la pres­
sion p0, sous l’influence de la gravité ÿ0. On a d’abord :

Po =  W -  (10)

De plus, la pression de la petite colonne d’air, comprise entre les deux sur­
faces sphériques de rayons r  et r  -+■ dr, est la différentielle de la pression p ; 
on a donc aussi

dp =  — gpdr.

Comme la gravité varie en raison inverse du carré de la distance au centro 
d’attraction, ,

D’ailleurs l’égalité ~  =  t — s donne par la différentiation :

r«dr , ., , , r2dç-ü-r- - dr, d où dr ==---- ,
r* t'0

Substituant ces valeurs dans celle de dp, on obtient : 

dp =  — ffotopds,

ou, divisant par la valeur de p0 (form. 10), pour rendre la formule homogène,

dp r0 pd.j pds l dp— =  — y5 u— ) ou -—  ------ . —  . (m
V  o 1 Po Po »’o P o  '  '

Cette formule importante va nous servir d’abord à obtenir l’intégrale qui 
figure dans la formule (8). En effet, en intégrant par parties, on a :

fîËS-,p -  f£ l \
J  Po J  Po

Qr, pour p =  p0, s =  0 ; donc la partie intégrée est nulle à chacune des li-
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mites de l’intégrale; donc si l’on désigne par c la valeur de s correspondante 
à p =  O, on a :

/ ° id p_ /V  pds
Po J  Po

• Po o

Mais, en vertu de la relation (11) :

r c ç>is____l__ Ç ° ip   l |~p 1° _  /
J  Po ~  »’o J  Po ro LPoJ ~ > 'o’
0 Po Po

donc enfin f  =  — — (12)
J  Po »’o

Po

et la formule approchée de la réfraction (8) est

0 =  a tang Z J 1 +  |  (3 + tang* Z) — — (1 +  tang* Z) i •

D’ailleurs, 0 est un arc évalué en longueur dans le cercle dont le rayon est 1. 
Pour l’obtenir en secondes, on le divise par la longueur de l’arc d’une seconde; 
et, pour ne pas altérer la formule, on divise le second membre par sin 1",

dont la différence avec l’arc est plus petite que . Si donc on conserve la

lettre 0 pour désigner la réfraction en secondes, on aura :

6 = s n ^ ( 1 + 5 “ _ r0) t a n s Z + ^ G “ _ y tang3Z' (t3)

On voit que cette formule est indépendante de la constitution de l'atmosphère ; 
ce qui la rend très-précieuse.

Calculons maintenant les deux intégrales qui figurent dans la formule (fl). 
Comme le volume d’une masse donnée d’air diminue quand la température 
diminue, et, par suite, lorsqu’on s’élève au-dessus de la surface de la terre,

il en résulte que — : et comme g diffère très-peu de ÿ0, il est certain
P? Po?o

qu’on a aussi -  <  —. Donc si l’on désigne par s une quantité inconnue, va- 
P Po

P Poriable, mais positive, et plus petite que 1, on a — =  e — ! ou
P Po

(H )’
Po Po

Cela posé, la première des intégrales cherchées

r o  /  _p_\ s d p _  r o  £ d p _  r o  spip_==_ i_ _ _  r °  jpdp
J  p0 \  P o /  PO p„ Po J  p0 Po1 r0 J  Po Po*

Or, en intégrant par parties, on a :



3 64 ADDITIONS.

/ ?pdp __ s p* 1 Ç  p8d? _

Po2 ~ 2 ~ 2 j  1 7 ’

et, comme aux deux limites la partie intégrée est nulle, il vient:

/ ° spdp____ 1̂ Ç  c p8d s   1 Ç c p pds Il Ç  0 p dp
p0 Pos 2 J o p08 2 J  # po p0 2 r0 J  ^  p0 jt0

en vertu de la relation (11). Intégrant encore par parties cette dernière, 
on a :

r P_ . ^  =  £ _ L _  fLË?.J Po lo Po Po J Po Po ’
■et comme, en passant aux limites, la partie intégrée est — 1, on a :

r  p_ é p = _ i _  r  p_ ép___i __
J p0 Po Po J pO Po Po J p0 Po Po '

en remplaçant — par sa valeur (14). Or, chacun des éléments de cette der-
P o

niére intégrale étant plus petit que — —  , leur somme est plus petite qr.e
po po

/ 2̂ - — ) c’est-à-dire que — i .  Donc, en désignant par e' un autre nombre 
Po P Po 2

positif et plus petit que 1, on peut écrire :

f °  e p_de=  > sJ P 0  Po Po 2

/ ° p dp  1 ,
— — =  — 1 +  -  e : 

p0 Po Po 2

donc enfin f °  ( 1 -  î!Î£. =  _  l - ---- i  i - e ' =  -  -  ( r + r )  • (15)
J  p„ \  Po/ Po 2 r0 4 »o ro\2 4/

Quant à la seconde intégrale, on a, en intégrant par parties,

/’ s8d£= s8p _ 2 /"*g<|*)d ,où r° »*dp____ , r° sAp
J  Po po J  f l  ’ J  Pu po J  O Po ’oj p0 Po

Mais C î Î E = slL — Ç E-ds, et par suite f  —  =  — C c E.ds .J Po Po J Po J p0 l'o J oPo

àonc r  r*p_  dt=_H p .L .
J  p0 Po ’o J  # /'o ’o J o Po

Or, si l’on prend un certain nombre e" positif et plus petit que 1, on pourra 
écrire :
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Çc £ Ë = 6" f Cf- I  =  Ê"
I 0 Po J  u Pfl r o

Ct, par suite, f  =  — 2 e" f j - )  ■ (16)
J  p0 Po \ ’ o/

La formule complementaire de la réfraction (1 4 ) devient donc :

80 =  a3 (f tgZ +  j | t g3Z +  j t g s z )

- 3  ( ^ + 0 a ^ ( tg Z + 2 tg 3 Z - H g 5 z ) + 3 e " a ( ^ ) 2( tg3Z + tg5z). (17)

Parmi tous les termes de cette formule, il est aisé de reconnaître, à l’aide 
des valeurs numériques que nous allons donner, que le plus grand est

3 e" a ( j -  j  (§s Z. Si donc on néglige tous les autres, on aura pour valeur 

approchée de 80, réduites en secondes

s' 0 =  3e" ü T F f â 2tang5z- (,s)

Si, en faisant abstraction de s", qui est plus petit que 1, on trouve que 8' 0 a 
une valeur insensible pour certaines distances zénithales, on pourra appli­
quer en toute sûreté la formule (13) à la détermination de la réfraction.

819. Réduction des formules en nombres. — Il nous faut maintenant
l

déterminer les valeurs des constantes a et — .O n  fait le calcul dans l’hypo-
ro

thèse où la température est 0° et la pression atmosphérique 0“ ,760 : c’est ce 
qu’on appelle l’état moyen de l’atmosphère. Les réfractions ainsi obtenues 
sont les réfractions moyennes ; on passe ensuite, par de légères corrections, 
aux valeurs correspondantes à un état quelconque.

Désignons par R0 et p0 les densités du mercure et de l’air, dans les cir­
constances spéciales où nous nous plaçons. D’après MM. Biot et Arago, on a,

p
pour l’état hygrométrique moyen de l’atmosphère, — =  10173,04. D’un

Po
autre côté, les hauteurs des deux colonnes sont en raison inverse des den­

sités ; ainsi — -—  =  — . On en conclut la valeur de /, que nous prendrons, 0-,700 p„
avec Laplace, égale à 7974“ . Comme le rayon moyen r0 de la terre vaut 
6360198“ , on a :

— =  0,001252553. (19)
ro

D’autre part, on a : a = ------—  ; et comme Kp0 =  ns — 1, on en con-
2 (I  - t- Kp0)
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dut : a =  ——— , n étant l'indice de réfraction de l’air. On tire de là :zn2
a =  0,000293876 ; (20)

a est nommé par les astronomes la constante de la réfraction.
Si l’on substitue ces valeurs de a et de r0 dans la formule (13), elle de­

vient :
6 =  60",56706 tang Z — O",067018 tang2 Z. (21)

Et l’on peut s’assurer qu’en substituant les mêmes valeurs dans la for­
mule (18), on a :

pour Z <  61°, 8’9 <  0",01,
pour Z <  72°, . 8’8 <  0",1,
pour Z <  78°, 8’0 <  1",
pour Z <  80°, 8'8 <  10".

La formule (21) pourra donc servir pour la détermination des réfractions 
moyennes, toutes les fois que la distance zénithale apparente sera inférieure 
à 72°. (V. les tables excellentes, calculées par M. Caillet d’après cette for­
mule, et insérées dans la Connaissance des temps pour l’année 1851.)

820. Formule pour un état quelconque de l’atmosphère. — Conser­
vons les lettres o, I, 6, p0 pour désigner les éléments relatifs à l’état moyen ; 
et représentons par o', f ,  6', p'0> les éléments correspondants à un état quel­
conque où la température est t et la pression barométrique II. Nous avons :

6' =  5 T P (1 + 1  -  9  tangZ+slïTÏ* ( ï “  9  tang’ Z’ I (22)
et a' =  ----- '

2 (l H- Kp '0) 1

Il nous faut calculer a et V. Or, soient m =  0,003655 le coefficient de dila­
tation de l’air (d’après M. Régnault), et n —  0,00018018 celui du mercure 
(d’après Dulong). Si l’on désigne par V le volume d’une certaine masse d’air 
à 0° et sous la pression 0m,760, et par V' le volume de la même masse à la 
température t et sous la pression II, on remarque que le volume V’, réduit 

V
à 0°, devient -—r ~ J  > et Que la hauteur barométrique H, à 0°, se réduit à 

. Par suite, en appliquant la loi de Mariotle, on a :

(»  +  ” * ) _____ 0,700 d ,où L  =  J L X _________________
V / 11 N V ' 0,760 (1 +  mt) (1 x « 0

\ l  +  n t j

Le facteur e =  ^  est le facteur thermométrique ; le facteur

6 =  q̂ J q est le facteur barométrique. En introduisant ici ces facteurs, on a :
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V V o'— =  e?]. Mais on a évidemment - 7- =  — : donc 
v > po

f/0=5V)p0. (23)

Éliminant p0 et p'0entre les équations a =  — ■ K?0 v ,K,P(L. 7~t > et^( l +Kpo)  2 ( I + K p 0)
l’équation (23), on trouve :

a' — ----- ------------- 7 î ou a '= ei)a  +  2 it\ (1 — en) a», (24)
1 —  2 a ( I —  en)

en négligeant le 3e ordre.
Pour calculer l', on a

Po =  SW» Po =  S o fV ! d’où ^  ^ • 7  =  en 7  •Po Po 1 1
H

Or, — =  1 ~ t ~ : on en tire facilement l '— l (1 -j-mf). (25)
P o  0,1 faO

Si l’on multiplie la formule (13) par en, et qu’on retranche le produit de la 
formule (22), on a :

I <26>
La partie qui contient tang’ Z n’atteint pas 0",0I. Le premier terme lui- 

même reste au-dessous de 0",01, tant que Z est au-dessous de 72°; donc, 
pour les valeurs de Z inférieures à 72°, on pourra prendre

6' =  en0. '  (27)

S2I. Remarques. — Quant aux réfractions correspondantes aux valeurs de 
Z supérieures à 72°, nous n’entrerons pas dans le détail de leur détermina­
tion ; le programme de la licence ès sciences n’en fait pas mention On peut 
consulter sur ce sujet l’Astronomie physique de M. Biot. Nous dirons seule­
ment que, depuis le zénith, où la réfraction est nulle, jusqu’à la distance 
zénithale de 10°, où elle est égale à !ü",3, elle croit proportionnellement à 
la distance zénithale, à raison de 1" par degré. Mais, dans le voisinage de 
l’horizon, les réfractions augmentent avec rapidité. Ainsi, quand un astre se 
lève ou se couche, en apparence, il est, en réalité, à 33' 48" au-dessous de 
l’horizon : c’est la valeur de la réfraction horizontale. Or le soleil n’a que 
32' 3 J ' de diamètre apparent au maximum ; nous le voyons donc tout entier 
au dessus de l’horizon, lorsque, de fait, il est encore tout entier au-des­
sous.

D’un autre côté, lorsque le soleil paraît à l’horizon, les rayons lumineux, 
qui partent de ses deux bords supérieur et inférieur, subissent des réfractions 
inégales, puisqu’ils sont inégalement distants du zénith; et, comme le bord 
inférieur est plus soulevé que le bord supérieur, le diamètre vertical de l’astre 
se trouve diminué, et le disque nous apparaît comme un ovale aplati dans le 
sens vertical.



3 6 8 ADDITIONS,

De plus, le diamètre horizontal éprouve lui-même une très-faible diminu­
tion ; car les deux cercles verticaux qui le comprennent sont plus rapprochés 
l’un de l’autre aux points où la réfraction élève l’astre, qu’aux points où il 
est en réalité.

622. Correction relative à la hauteur du pôle. — Lorsqu’on détermine 
la hauteur du pôle ou la latitude d’un lieu, il faut avoir soin de corriger de 
la réfraction les hauteurs de l’étoile circumpolaire qu’on observe; ce n’est 
qu'à cette condition que la latitude sera la même, quelle que soit l’étoile 
observée. Tous les résultats s’accordent, dès que l’on fait cette correction ; 
ils ne s’accordent pas dans le cas contraire. Ce fait est une preuve de la 
réalité du phénomène de la réfraction atmosphérique et de l’exactitude des 
tables de correction.

Nous avons extrait la plus grande partie de cette note de l’excellent cours 
d’astronomie professé en 1860 par M. Serret, à la Faculté des sciences de Paris.

L IV R E  I I I.  —  L E  S O L E IL .

NOTE Xll (n° 128, p. 101).

Sur le mouvement circulaire du soleil.

B23. Calcul de l ’ascension droite du point r  et de l ’obliqu ité ._
L’ascension droite de r  et l’obli­
quité peuvent se déduire avec 
avantage, surtout le second élé­
ment, des formules de la trigo­
nométrie sphérique, dans l’hy­
pothèse que le centre du soleil 
décrit un grand cercle. Il nous 
suffira pour cela de deux obser­
vations d’ascension droite et de 
déclinaison de l’astre. En eflet, 
soient (fig. 152), EE’ l’équateur, 
CC' l’écliptique, S et S' deux 
positions du soleil dont on con­
naît les ascensions droites 1D 
=  JL, 1°' =  A ', et les déclinai- 
sonsSD =  ® , S'D'= (£)'. Soien t, 

en outre, a l’ascension droite I r  du point équinoxial, et <o l’obliquité S r  D

Fig. 152.
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do l'écliptique. Le triangle rectangle S t  D donne :

tang SD =  sin y D tang S y D, 

■OU tang (33 =  sin fĵ  — a) tang to.

Le triangle S' T b' donne de môme :

tang ® ’=sin <J/ —a) tang to.
C esd eu x  fo rm u le s  f o u rn is s e n t a isé m e n t a  e t  to.

Car, en  d iv is a n t la sec o n d e  pur la  p re m iè re ,  o n  o b tie n t :

sin (A' — et) _  tang J)* _  si ii qy cos (Q 
sin JL — ce; tang (¾ siu (¾ cos (¾1 ’

d'où, par une transformation connue,

■ a n g ( ^ - a )  sin fqy +  g)) 
ta„, -;V —-¾ 6,11 l®' — Û3)

Cette formule donne a ; et, par suite, l’une des deux premières fournit to.
824. Le soleil décrit un grand cercle de la sphère céleste. — Le calcul 

précédent suppose que le soleil décrit un grand cercle de la sphère céleste ; et 
il importe de vérifier cette hypothèse. Pour cela, commençons par établir la 
relation analytique qui exprime que trois points sont sur un même grand cercle.

Soient J ,, A'> A", les ascensions droites, et (J3, (33', les déclinaisons de 
ces trois points ; désignons par to l’inclinaison de ce grand cercle sur le plan 
de l’équateur, et par a l’ascension droite de son nœud. On a les trois équations 
simultanées,

tang (¾ =  sin {X — a) tang to, 
tang =  sin (A — a) tang to,
tang (33" =  sin IX"  — a) tang to ;

et l’on peut éliminer a et to, en multipliant la première par sin (A'' — A')> 
la seconde par sin (A —A"), et Ia troisième par sin CA' —A>, puis en 
ajoutant les trois produits; car on reconnaît aisément, en développant les 
sinus, que le coefficient de tang to est nul de lui-même; de sorte que l’on a : 
tang (33 sin (A" — AO +  tang (33' sin (A — A") tang (J3" sin (A' — A ) =  0. 
C’est la relation cherchée.

Pour l’appliquer au mouvement du soleil, il suffit do substituer dans cette 
équation de condition les coordonnées de trois quelconques de ses positions; 
on reconnaîtra toujours qu’elles la vérifient constamment. On doit en conclure 
que le soleil décrit un grand cercle de la sphère célesto.

c o s u .  G. 24
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Sur la mesure du diamètre apparent du soleil.

325. — On détermine quelquefois le diamètre apparent du soleil, en me­
surant, à l’aide de la lunette méridienne, le temps qui s’écoule entre les 
contacts de ses deux bords occidental et oriental au fil central de la lunette. 
Mais il faut remarquer que l’arc dont ce temps fournit la mesure est un arc 
du parallèle que décrit alois le soleil, en vertu du mouvement diurne. L’œil 
de l’observateur n’est pas au centre de cet arc ; et, par suite, le nombre de 
degrés que l’on obtient ainsi est le diamètre apparent du soleil, vu du centre 
de ce parallèle. Pour avoir le diamètre apparent, vu de la terre, il faut mul­
tiplier le premier par le rapport inverse des distances, c’est-à-dire par le 
cosinus de la déclinaison du soleil pour le jour de l’observation. Il n’est pas 
permis de négliger ce facteur, surtout aux époques des solstices.

Si Ton mesure ainsi le même jour, le diamètre apparent du soleil par cette 
méthode et par celle qui est indiquée dans le texte, dans deux directions per­
pendiculaires entre elles, on trouve que le disque du soleil est rigoureusement 
circulaire.

NOTE XIII (n° 131, p. 103).

NOTE XIV (n» 137, p. 121).

Des cadrans solaires.

B2G. Cadran horizontal. — Concevons qu’on ait construit et orienté un

cadran équatorial EOG (fig. 153) j son plan coupe le plan horizontal suivant la
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ligne d’est et ouest EO, et son style GP le perce en H. Si l’on prolonge les 
lignes horaires G 12, G 1, etc., du cadran jusqu’à leur rencontre avec EO, en 
K, L, etc., les plans horaires, qui contiennent chacune d'elles avec le style, 
ont pour traces horizontales HK, HL, etc. Si donc on enlève le cadran équa­
torial en laissant le style HGP, l’ombre se portera à midi vrai sur HK, à une 
heure vraie sur HL, etc., puisque le soleil traverse à ces époques les plans 
horaires correspondants. 11 suffira donc, pour construire un cadran horizon­
tal, de tracer les droites IIK, IIL, etc., et de diriger convenablement le style 
HGP. Or les droites HK, HL, etc., ne font pas entre elles des angles de 15°, 
comme dans le cadran équatorial. Mais si l’on fait tourner le cadran équatorial 
autour de OE comme charnière, on voit : 1° que la ligne GK, perpendiculaire 
à EO, tombera sur HK, qui est aussi perpendiculaire à EO ; 2° que le point G 
tombera à une distance KG' =  KG, distance facile à construire, puisque 
dans le triangle KGH, rectangle en G, on connaît l’hypoténuse KH et l’angle 
II - 48° 50' 11" à Paris ; 3° enfin que les droites LG, etc., coïncideront avec 
LG', etc. Par conséquent, les angles LG'K, etc., seront de 15°, puisqu’ils se­
ront égaux aux angles LGK, etc. De là résulte la construction suivante.

827. Construction du 
ligne EO itig. 154) et une 
perpendiculaire KH, des­
tinées à représenter , 
l ’une la ligne d’est et 
ouest, et l’autre la mé­
ridienne On choisit sur 
cette dernière un point 
Il qui sera le pied du 
style ; puis on déter­
mine la longueur EG' 
du cété de l'angle droit 
du triangle rectangle 
G'II'E, dont l’hypoténuse 
est

EH' =  KH,

et dont l’angle EH'G' est 
la hauteur du pôle au 
lieu où I on opère ; et 
l’on rabat cette longueur 
en KG sur KII. Du 
point G comme centre, 
avec un rayon arbi­
traire, on trace une cir­
conférence que l’on partage en 24 parties égales en partant de IIK j on pro­
longe les rayons menés aux points de division jusqu’à la droite EO, en I, J, 
K, L, N, etc., et l'on joint enfin HI, HJ, HK, HL, HN, etc. Ces dernières

cadran horizontal. — Sur un plan, on trace une.

Fig. 154.
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droi:es sont évidemment les lignes horaires du cadran horizontal, corres­
pondantes à 10“, 11“, 12“, t “, 2“, etc. Enfin on fixe en II le style IIP, en s’ar­

rangeant de manière qu’il soit avec I1K dans un 
plan perpendiculaire an cadran, et qu’il fasse un 
angle KIIP égal à la hauteur du pôle ; et l’on 
oriente le plan de manière que I1K soit a direc­
tion de la méridienne vers le nord.

Ordinairement on remplace le slyle par une 
ardoise taillée en triangle rectangle I1ST (fig. 153), 
dans lequel l’angle S est la hauteur du pôle, et 
on la place sur le cadran, de manière que SR 
coïncide avec KII, S avec II, et que RT soit ver­
ticale •, alors ST est évidemment parallèle à Taxe

du monde.
S28. Cadran vertical. — Lorsque le mur sur lequel doit être tracé un ca­

dran vertical est exactement dirigé de l’est à l’ouest, la construction de co
cadran ne diffère pas, 
au fond, de celle que 
nous venons d’indiquer 
pour le cadran hori­
zontal. Soit, en effet, 
EOW (fig. 15G) ce mur; 
une horizontale EO, 
tracée sur sa surface, 
sera la ligne d’est et 
ouest, et l’on pourra 
toujours concevoir 
qu’on oriente un ca­
dran équatorial EOG, 
en faisant coincider sa 
ligne d’est et d’ouest 
avec EO, et en l’incli­
nant convenablement, 
de manière que son 
style GP soit parallèle 
à l’axe du monde. Or 
ce style perce en Y le 

Fig, i5é, mur ; les plans horai­
res qui contiennent le

style GP et chacune des lignes horaires GJ, GK, GL, etc., ont pour traces 
sur le mur les droites VJ, VK, VL, etc. Ce sont donc là les lignes horaires 
du cadran vertical, et il suffit de les construire pour construire le cadran. 
On concevra, pour cet effet, que l’on rabat le cadran équatorial autour de EO 
sur le mur vertical, et l’on arrivera facilement à la construction suivante.
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329. Construction du cadran vertical. — On trace sur le mur (fig. 157) 
une horizontale EO et une verticale \'K, qui représentent, l’une la ligne d’est 
et ouest, et l’autre la ligne horaire du midi vrai. On prend sur cette dernière 
un point V pour pied du style. Puis on construit un triangle rectangle V'EG’, 
ayant pour hypoténuse VE =  Y K, et pour angle G'V'E le complément do 
a hauteur du pôle (41° 9' 49" à Paris) ; et l’on rabat le côté EG' en KG sur

KV. Du point G comme centre, on décrit un cercle de rayon arbitraire, et on 
le partage en 24 parties égales, en partant de VK ; on joint le centre aux 
points de division, et on prolonge ces droites jusqu’à la rencontre de EO en 
I, J, K, L, N, etc. ; enfin on joint VI, VJ, etc. ; ces droites sont évidemment 
les lignes horaires du cadran. On met les nombres X, XI, XII, I, II, etc., sur 
ces droites. Enfin, on fixe au point V un style VP, que l’on oriente de ma­
nière qu’il soit dans le plan méridien qui contient VK, et qu’il fasse avec VK 
l’angle complémentaire de la hauteur du pôle.

Au lieu de faire les constructions auxiliaires sur le mur vertical, on peut, 
après avoir prolongé la verticale VK jusqu’au sol et choisi le point V, con­
struire sur le sol le rabattement indiqué du cadran équatorial, déterminer le 
point H et les lignes horaires du cadran horizontal, et joindre au point V les 
points où ces droites rencontrent la base du mur ; on aura ainsi évidemment 
les lignes horaires cherchées.

330. Cadran déclinant. — C’est à cette dernière méthode qu’il faut re­
courir pour construire un cadran sur un mur vertical, lorsque ce mur est dé­
clinant, c’est-à-dire lorsqu’il n’est pas exactement perpendiculaire à la méri­
dienne. Après avoir reconnu que la trace du plan méridien sur le mur est 
nécessairement verticale, comme intersection de deux plans perpendiculaires 
à l’horizon (fig. 158), on choisit le point V, qui doit être le pied du style, et 
l’on trace la verticale VK' qui passe par ce point. Par le pied K' de cette verii-
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cale on trace sur le sol la méridienne K'Jl, qui est oblique à la base RS du mur. 
Le plan YK'.VI est évidemment le méridien ; le style doit être situé dans ce 
plan, et son prolongement doit rencontrer K’Jl en un point H, et faire avec 
cette droite un angle égal à la hauteur du pôle. On construit donc facilement 
ce point de rencontre, en traçant sur le sol une droite K'V' =  K'V perpen­
diculaire à K'M, et en menant par V’ une droite V'H sous l’angle K'V'H égal 
au complément de la hauteur du pôle. Gela posé, traçons EO perpendicu­
laire à la méridienne K'M, et construisons le cadran horizontal qui aurait EO

pour ligne d’est et d’ouest, et H pour pied du style ; on sait que les droites 
HJ, HL, etc., seront les lignes horaires de XI heures, de I heure, etc., parce 
qu’elles seront les traces horizontales des plans horaires correspondants. Si 
l’on prolonge ces lignes jusqu’à leur rencontre avec RS en J', L', etc., les 
traces de ces plans horaires sur le mur vertical déclinant seront VJ', 
VL', etc. ; car le style du cadran horizontal va évidemment passer en V. Ce 
sont donc les lignes horaires cherchées. Il ne reste plus qu’à fixer le style au 
point V, dans la direction VH ; ce qui s’opère sans difficulté.
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NOTE XV ( n° )75, p. 134).

Snr la parallaxe (l’ an a»trc.

B3l. Formules relatives à la parallaxe. — II existe, entre la parallaxe 
de hauteur p, la distance d de l’astre à la terre, le rayon r  de la terre, et la 
distance zénithale Z de l’astre vu du point A, une relation trigonométrique 
très-simple. Car, dans la flg. 55 (p. 131), on a :

sin SAO OS _
sin OSA OA ’

t r  SAO= 180° —Z; donc =  li  , d’où sin p =  -  sin Z.sin p r ^ d

Comme p est toujours fort petit, on peut remplacer le sinus par l’arc, et 
l’on a :

P ~ ~ d  s *“  z - 0 )

On voit par cette formule que, la distance d restant constante, p croit avec 
Z, et sa valeur est maximum lorsque Z =  90°. En la désignant par P, on a 
alors :

p = 3 -  (2>

C’est la valeur de la parallaxe horizontale de l’astre, puisque Z =  90°. On 
pouvait déduire cette formule du triangle rectangle SAO (fig. 56, p. 132).

On voit aussi par la formule (1) que la parallaxe est nulle au zénith ; car 
alors Z et sin Z sont nuis.

On remarque enfin que, dans les formules (I) et (2), p et P sont exprimées, 
non pas en secondes, mais en fractions de la circonférence décrite avec le 
rayon 1, puisque ces arcs remplacent leurs sinus.

TSi, dans la formule (1), on remplace — par P, on a :

p =  P sin Z, (3)

formule qui donne la parallaxe de hauteur en fonction de la parallaxe hori­
zontale; mais ici p et P peuvent être évaluées toutes deux en minutes et en 
secoudes, ou en fractions de la circonférence, à volonté. Car les nombres qui 
les mesurent aux deux points de vue sont proportionnels.

La parallaxe horizontale du soleil est P = 8 //,86 à la distance moyenne. La 
formule (3) fournit les parallaxes de hauteur à la même distance. Pour les 
obtenir à toute autre distance, il suffit de se rappeler que la parallaxe varie 
en raison inverse de la distance (n° 133), c’est-à-dire proportionnellement
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au diamètre apparent de l’astre. Ou a ainsi les éléments nécessaires pour 
construire la table des parallaxes.

NOTE XVI ( n° 181, p. 139).

Mesure île la  masse du Soleil.

832. Calcul de la masse du so le il. — Le problème à résoudre, pour obte­
nir le rapport de la masse du soleil à celui de la terre, consiste à déterminer 
le rapport des espaces parcourus pendant une seconde, par deux corps qui, 
partant du repos, tomberaient, l’un sur le soleil, l’autre sur la terre. Or les 
travaux des physiciens nous apprennent qu’un corps qui tombe à la surface 
de la terre, c'est-à-dire à une distance r =  G3?7398m de son centre, par- 
pourt 4",90418 dans la première seconde de sa chute. Cherchons donc à 
déterminer l’espace que parcourrait, en une seconde, un corps qui tomberait 
sur le soleil.

C’est la terre elle-même dont nous allons déterminer la chute. Car nous 
montrons, p. 165, que c’est elle qui tourne autour du soleil, et que c’est l’at­
traction de cet astre qui l’oblige à décrire une ellipse autour de lui. Soient

donc (fig. 159) S le centre du soleil, THK 
l’orbite de la terre, que je suppose circu­
laire, T la position de la terre à un instant 
quelconque, II sa position au bout d’une 
seconde. Si l’attraction n’existait pas, la 
terre suivrait avec sa vitesse acquise la 
tangente TV, et parcourrait en la droite 
TI. Si, au contraire, la vitesse était nulle 
en T, la terre tomberait sur le soleil en 
1*, d’une distance TP. C’est la combinai­
son de ces deux mouvements simultanés 
qui produit le mouvement suivant l’arc 
TI1. On peut donc considérer cet arc 

comme la diagonale du parallélogramme construit sur Ic3 espaces TI, TP, 
parcourus en l*. D'après cela, TP est la projection de TH sur TS ; et la 
géométrie donne, en considérant l’arc TU comme confondu avec sa corde,

TP = T 11
21 S

Or, la circonférence entière est parcourue par la terre en une annéo sidérale
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n° 211), qui vaut 305J- »'• ®oi., 25G38, ou 80400* X  305,25038. Donc l’arc

TH, parcouru en T*, e s t------------------------- de cette circonférence. D’ail-
’ r  ’ 8C40UX305, 25038

leurs cette circonférence a pour rayon TS =  23280 r ;  elle est donc égale à
2ir x  23280 r. Donc

Sic X  23280 rqre TIJ —  , •
80400X 305, 20038

Substituant cette valeur et celle de TS dans celle de TP, il vient :

T p =  _______ 4ic» X 23280» »•*
80400* X  305,250382 X  2 X  23280 )• ’

on, en simplifiant,
T p =  2-* X  23280 r

80400*X  305,25038* '

En mettant dans cette formule, r=G37739S", on trouve TP =  0",003042. 
Ainsi, en une seconde, la terre, située à une distance 23280 r  du soleil, 
tombe sur cet astre de 3m",042. Il eu serait de même de tout autre corps 
placé à la même distance.

D’un autre côté, un corps, placé à la distance )• du centre de la terre,
tombe sur ce globe, en 1*, de 4“,90448. S’il était placé à la distance 23280 r,
l’attraction serait 23280* fois plus faible, et la chute, en une seconde, no

4m 90448 4® 00448serait plus que de ’’ ■ • Par conséquent, 0",003042 et — sont  les

espaces parcourus, à la même distance, dans la première seconde de la chute
0,003042 X  23280* , , ,sur le soleil et sur la terre ; donc le rapport------  ----- — est égal au

t  j J U i i l  O

rapport des masses des deux corps. Et, comme on prend pour unité la masse 
de la terre, ce rapport est la masse du sule'l ; ainsi :

0,003012 X  23280*
1 ~~ 4,90448

On trouve, en effectuant le calcul, M =  359200. On a trouvé par d’autres 
calculs, et adopté la valeur M =  324479.
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Rotation du Soleil sur lui mdinc.

S33. Formules qui fixent la  position d'une tache à la surface du 
soleil. — Nous avons donné (note I, n° 419) les formules qui transforment 
les coordonnées géocentriques d’un point de l’espace en coordonnées liélio- 
centriques. Ces formules sont :

r12 =  U* +  î * — 2Ilr cos X cos (l — L),
„ r  cos X sin L—  U sin I.tang I' = ------- :------ ;— ------ r  >r cos X cos l —  1\ cos L

tang X'_________r si il X______
sin I' r cos X sin L — R sin L

Si l’on suppose que le point de l’espace soit une tache du soleil, / et X sont 
la longitude et la latitude géocentrique de la tache, et L est la longitude 
géocentrique du centre du soleil. On sait comment ces coordonnées se dé­
duisent, par le calcul, des ascensions droites et déclinaisons observées direc­
tement (note I, n° 473) ; on peut donc les regarder comme connues. En outre, 
R est la distance de la terre au soleil, r ’ est le rayon du soleil ; ce sont en­
core deux éléments connus. On a d’ailleurs l’habitude de les remplacer par 
leurs valeurs en fonctions de la parallaxe P et du diamètre apparent 3 du so­
leil ; car on sait qu’en désignant par p le rnyou de la terre, ou a (note XV),

=  P jj- î d’où R =  y  î (4)

et (n» 178), ^  =  7 »  d’où , J = w '  (5)

Les seules inconnues de la question sont donc .

r, distance du centre de la terre à la tache,
I' et X' longitude et latitude héliocentriques de la tache.

Or la formule (I), qui est du 28 degré en r, donne pour r deux valeurs 
réelles et positives, car le rayon visuel mené à la tache perce en deux points 
la surface du soleil ; mais on choisit naturellement pour r la plus petite de 
ces deux racines. Les deux autres formules (2) et (3) fournissent les valeurs 
de l ' et de X'.

834. Lieu des positions d’une tache. — On peut appliquer le même cal­
cul à la détermination des positions successives d’une même tache, vue du 
centre du soleil, chercher l’équation du plan qui contient trois d’entre elles, et 
reconnaître que ce plan contient toutes les autres. Ainsi la  tache décrit une

(NOTE XVII n° 188, p. 143).

( 1)

( 2)

(3)
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tourbe plane, c’est-à-dire un cercle à la surface du soleil. Une antre tache, 
soumise aux mêmes formules, paraît se mouvoir dans un plan parallèle au 
premier. Donc, le soleil a un mouvement de rotation autour d’un axe passant 
par son centre.

S3S. Détermination de l’équateur solaire e t de l'axe de rotation. —
On obtient aisément l’équation du plan parallèle aux plans des courbes dé­
crites, et passant par le centre du soleil : c’est le plan de l’équateur solaire ; 
on a, par suite, sa trace et son inclinaison sur le plan de l’écliptique, par les 
formules ordinaires de la géométrie analytique. Puis on obtient aussi facile­
ment les équations de l’axe, puisqu’il est perpendiculaire au plan de l’équateur 
solaire, et qu’il passe par le centre du soleil ; et l’on peut calculer l’angle 
qu'il fait avec l’axe de l’écliptique.

S3G. Nature du mouvement de rotation. — Les formules de la géomé­
trie analytique permettent de calculer la distance du centre du soleil au plan 
du parallèle décrit par une tache, puisque l’équation de ce plan est connue; 
or le rapport de cette distance au rayon iJ est le sinus de la déclinaison (£)’ de 
la tache, prise par rapport à l’équateur solaire ; donc cette déclinaison est 
connue, et l’on en déduit la valeur du rayon du parallèle en multipliant r' par 
ccs (jy. Cela posé, on peut calculer la longueur de la corde qui joint deux 
positions observées de la tache, puisqu’on connaît les coordonnées de ses extré­
mités; le rapport de la demi-corde au rayon du parallèle est le sinus de la 
moitié de l’arc décrit par la tache entre les deux observations. On détermine 
ainsi le mouvement angulaire de la tache, et l'on reconnaît que l’arc décrit 
est proportionnel au temps employé. Donc, le mouvement de rotation du 
soleil est uniforme.

837. Durée de la rotation. — Le même calcul donne la durée de la révo­
lution entière; car, en désignant par t le temps employé à décrire l’arc a, la

durée de la révolution sera t X ——-  .a
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NOTE XVIII (n° 196, p. 160).

Calcnl des segments déterminés par l ’horizon dans nn 
parallèle céleste.

330. — Il existe une relation trigonomélrique très-simple entre la latitude
X du lieu d’observation, la dé­
clinaison (¾ du soleil et l’un des 
arcs 2a que l’horizon détermine 
dans le cercle diurne décrit 
par l’astre. Soient (fig. 160) : 
QQ' le parallèle décrit par l’as­
tre, et 1111' l’horizon du lieu, 
coupant ce parallèle suivant 
VV' ; menons le cercle horaire 
PVK. La latitude X =  PH, la 
déclinaison du soleil (J) =  VK ; 
l’angle V1V' correspond à l'arc 
VQV'==2a situé au-dessous de 
l’horizon ; donc a =  V1Q. 
D’ailleurs cet angle VI(j est la 
mesure de l’angle HPV des 

deux grands cercles PII et PV. Donc, dans le triangle sphérique PI1V, qui 
est rectangle en H, on a :

PII =  X, PV =  90° — 03, P =  a.

Or, entre ces trois éléments, la trigonométrie sphérique donne la relation, 
cos a =  cot.PV tang PH, ou cos a =  tang ®  tang X, 

formule qui fera connaître la partie 2a du cercle diurne qui est située au- 
dessous de l’horizon.

Comme le mouvement diurne est uniforme, le rapport ---- —----  est le
’ 3üO° —  Va

rapport de la nuit au jour ; et l’on conclut facilement de sa valeur la durée 
du jour et celle de la nuit, à l’époque de 1’obscrvatiou.
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NOTE XIX (n« 203, p. 137).

Variations «le la  température «le la  terre.

B59. Chaleur solaire. — La quantité de chaleur que la terre reçoit 
du soleil, à un instant donné, est constamment la même; car la distance des 
deux corps ne varie pas sensiblement, liais cette chaleur se perd par voie de 
rayonnement, et l’expérience prouve que la température moyenne du globe 
reste stationnaire.

Or la chaleur solaire se distribue fort inégalement à la surface de la terre, 
aux diverses époques de l’année ; elle varie pour un même lieu avec les sai­
sons, et pour une même époque avec la latitude. Car, pour un lieu déter­
miné, la quantité de chaleur reçue dépend principalement de deux causes : 
1“ la hauteur du soleil au-dessus de l'horizon ; 2° la durée de la journée. On 
sait, en effet, qu’eu vertu des lois de la chaleur, démontrées en physique, 
cette quantité de chaleur, reçue sur une surface donnée, est proportionnelle 
au sinus de l'angle d’incidence, c’est-à-dire au sinus de la hauteur du soleil 
au-dessus de l'horizon ; et l’on comprend assez que plus le jour est long, et 
plus, toutes choses égales d’ailleurs, elle doit être considérable.

S40. Hauteur méridienne du soleil au-dessus de l'horizon. — Déve­
loppons la première de ces causes. Soient (fig. ICI) : T la sphère céleste, PC 
le méridien du lieu d’observation,
TZ la verticale, HH', EE', CC' les 
traces de l’horizon, de l’équateur et 
de l’écliptique, sur le plan du mé­
ridien ; soit, en outre, SS' la trace 
du cercle diurne que décrit le so­
leil à une époque donnée. La hau­
teur méridienne de l’astre est alois 
SH, sa déclinaison boréale est SE, 
et Ton a :

SH =  Eli +  SE.

Or Eli est le complément de la la­
titude boréale ). du lieu ; donc, en 
désignant par (¾ la déclinaison et 
par A la hauteur méridienne, on a:

Fig. 101.

h =  90° +  (I)

Si le soleil est dans l’hémisphère austral, et parcourt, par exemple, le parai- 
lèle S ,S '„  on a :

S t II =  EH —S,E,
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A =  90o — ).-(¾.

Ces deux formules sont renfermées dans la première, si l’on considère la dé­
clinaison du soleil comme positive ou négative, suivant qu’elle est boréale ou 
australe.

Remarquons toutefois que cette formule suppose que le zénith Z de l'ha­
bitant de l’hémisphère boréal ne tombe pas entre S et E. Car, si cela a lieu 
(fig. 1C2), la hauteur méridienne du soleil est SPH, et est comptée vers le 
nord, au lieu d’ètre comptée vers le sud. Elle se compose alors de SP +  PH,

c’est-à-dire du complément de la 
déclinaison du soleil, augmenté de 
la latitude. Ainsi, dans ce cas,

A =  900 - ( 0  +  ) ,. (2)
C’est cette formule qu’il faut em­
ployer, lorsque l’observateur voit, à 
midi, le soleil passer au nord do 
son zénith.

11 est faeilef de comprendre que, 
pour l’habitant de l’hémisphère aus­
tral, les formules seront les mêmes, 
pourvu que, dans la formule (1), on 
considère (0 comme positive au-des­
sous de l’équateur, et comme néga­

tive au-dessus ; car les phénomènes se passeront pour lui dans l’hémisphère 
austral céleste, comme ils se passent pour l’habitant du nord dans l’hémi­
sphère boréal, et vice versd.

841. Variations de cette hauteur. — Cela posé, examinons comment 
varie la hauteur A en un lieu déterminé de la terre, aux diverses époques de 
l’année.

1» Pour l’habitant de l’équateur, ), =  0; la formule (2) donne A =  90° — <0. 
Or, à l’équinoxe du printemps, (0 =  0 ; donc A =  90», et le soleil passe au 
zénith à midi. De l’équinoxe au solstice, (0 augmente, et A diminue, et at­
teint un minimum égal à 06° 32’ 43"; puis, du solstice à l’équinoxe, (0 di­
minue, et h augmente, en passant par les mêmes valeurs en sens inverse. A 
l’équinoxe d’automne, on a de nouveau A =  90°; le soleil passe encore au 
zénith. Pendant cette demi-année, les ombres à midi sont portées vers le sud. 
Après l’équinoxe, il faut employer la formule (I), qui devient, pour X =  0; 
A =  9O° +  (0, (0 étant négative. C’e3t donc la même formule; et de l’équi­
noxe d’automne à celui du printemps, la hauteur varie de la même manière, 
seulement les ombres sont portées vers le nord. On voit, d’après cela, que la 
chaleur doit être fort intense sous l’équateur, puisque la hauteur méridienne 
du soleil y est toujours fort considérable.

2» Sous la zone torride, on a X < 2 3 °  27' 16". A l’équinoxe, (0 =  0, et la
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formule (1) donne /i =  90° —). on A>GG» 32'45". A mesure que (¾ aug­
mente, A augmente; lorsque ©  =  X, h — 90°, et ce jour-lù le soleil passe à 
midi au zénith. Puis l’astre passe au nord du zénith; il faut prendre la for­
mule (2), qui montre que, ©  augmentant, h diminue, jusqu’au solstice, épo­
que à laquelle h — GG° 32'46" +  ).; cette hauteur est d’autant plus grande, 
que le lieu est plus voisin du tropique. Lorsque le soleil redescend vers l’é­
quateur, les mêmes variations ont lieu en sens inverse. Lorsqu’il passe dans 
l’hémisphère austral, la formule (1) s’écrit h =  90° — ). — ©. Ainsi, h dimi­
nue à mesure que (¾ augmente, et son minimum est CG» 32' 45" — puis le 
soleil se rapproche de l’équateur, et les mêmes variations se reproduisent. On 
voit donc que, pour l’habitant de la zone torride boréale, le soleil passe aussi 
deux fois au zénith dans l’année, que les hauteurs méridiennes sont très- 
grandes pendant le printemps et l’été, et qu’elles le sont moins, sans cesser 
cependant d'être supérieures à 43° 5', en automne et en hiver. C’est ce qui 
explique la forte température qui a lieu dans cette partie du globe, surtout 
pendant les deux premières saisons.

3° Sous le tropique, X =  23° 27' 15", h =  66° 23' 45" +  ©. La discussion 
est la même, seulement c’est au solstice d’été que h =  90° ; et, après cette 
époque, cette hauteur va diminuant, jusqu’au solstice d’hiver, où l’on a 
h =  6G° 32' 45" — 23° 27' 15" =  43» 5' 30". On voit que la température doit 
y être moins élevée que dans le voisinage de l’équateur.

4° Sous la zone tempérée, ). >  (J), le soleil n’atteint jamais le zénith ; la 
formule (1) doit maintenant servir seule. La plus grande hauteur a lieu au 
solstice d’été ; elle est h =  90» + 23° 27' 15"— X. La plus petite a lieu au 
solstice d’hiver, elle est h =  90°— 23» 27' 15" — ).. Ainsi le soleil s’élève 
moins haut que sous la zone torride ; la température doit être plus tempérée. 
De plus, X étant plus petit que G6° 32' 45", latitude du cercle polaire, la hau­
teur h n’est jamais nulle ; mais elle est, à une même époque, d’autant plus 
faible que X est plus grande; donc la température doit s’abaisser, à mesure 
que l’observateur se rapproche du cercle polaire.

5» Sous le cercle polaire boréal, X =  GG» 32' 45", et, par suite, 
h = 23° 27' 15"+© . Ainsi, de l’équinoxe au solstice d’été, h croit de 23° 27' 15" 
au double de cette valeur, et décroît ensuite en sens inverse, du solstice & 
l’équinoxe d’automne. Pour les deux autres saisons, h =  23° 27'15" — © ; 
elle continue donc à décroître jusqu’au solstice d’hiver, où elle devient nulle; 
puis elle reprend des valeurs comprises entre 0 et 23» 27' 15", du solstice à 
l’équinoxe. On voit donc que l’habitant du cercle polaire reçoit le maximum 
de chaleur au solstice d’été, et qu’il n’en reçoit pas du tout au solstice d’hiver, 
que d’ailleurs il en reçoit moins que celui de la zone tempérée.

6» Sous la zone glaciale, X >  GG» 32' 45", h est plus petit que 
23» 27' 15" +  © ; la hauteur y est donc encore moindre, à toute époque, que 
sous le cercle polaire. Mais de plus, après l’équinoxe d’automne, lorsque 
©  =  90» — X, h =  0 ; et à partir de ce moment jusqu’au solstice d’hiver, et 
du solstice jusqu’au moment où ©  redevient égale à 90° — X, le soleil no
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parait pins sur l’horizon ; la température doit se ressentir considérablement 
de cette absence, d’autant plus longue que ). est plus grand. 11 est vrai que, 
par contre, vers le solstice d’été, le soleil ne se couche pas dans ces régions; 
mais, comme il ne s’élève jamais à une grande hauteur, la longue durée du 
jour est loin de compenser sa faible élévation.

7° Enfin, pour l’habitant du pôle, A =  90°, A =  ® . Ainsi le soleil ne s’é­
lève jamais au-dessus de l’horizon à une hauteur plus grande que 23° 27' 15" ; 
et, quoiqu’il reste visible pendant six mois consécutifs, on comprend que la 
température même du solstice d’été doit être fort basse; à plus forte raison 
en sera-t-il ainsi pendant les six mois de nuit.

Concluons, de cette discussion, que la hauteur méridienne du soleil, 
/i =  90"— X ± (£), diminue pour une même époque de l’année, à mesure que 
la latitude augmente, dès qu’elle est comptée vers le sud ; par conséquent, 
la température doit s’abaisser, par cette cause, à -mesure que l’on s’avance 
vers des régions de plus en plus septentrionales. Remarquons, en outre, que 
les saisons les plus chaudes doivent être le printemps et l’été, et que les plus 
froides doivent être l’automne et l’Iiivcr. Notons enfin qu’à des époques 
également distantes d’un solstice, la déclinaison (Q étant la même, les hau­
teurs méridiennes sont les mêmes pour un même lieu.

Nous avons raisonné dans l'hypothèse où l’observateur habite l’hémisphère 
boréal de la terre. Pour l'habitant de l'hémisphère austral, il est évident que 
les saisons sont interverties, que ses hivers sont les étés du premier, et vice 
versâ : la discussion, du reste, serait complètement analogue.

542. Variations de la durée du jour. — Quant à la durée de la journée, 
seconde cause dos variations do la température, nous avons déjà dit précé­
demment ce qui pouvait servir à l’évaluer (n° 19G). La construction que nous 
avons donnée (fig. G3) montre que, pour un lieu dont la latitude X =  PII, 
et à l’époque où la déclinaison (¾ =  QE', la durée de la journée est propor­
tionnelle à l’arc v'Q, et celle de la nuit à l’arc VQ'. Le rapport de ces deux 
arcs est donc le rapport du jour à la nuit ; et, comme la durée totale est do 
vingt-quatre heures, on en conclut aisément les deux durées partielles.

Mais la formule de la note XVIII montre bien mieux ces rapports. Nous en­
gageons les élèves à discuter cette formule pour toutes les latitudes X et pour 
toutes les déclinaisons ©  du soleil ; l’angle a, calculé à l’aide des Tables, leur

donnera les valeurs du rapport ——----- , qui est le rapport de la durée de la
1 bU° —  oc

nuit à la durée du jour
543. Pourquoi la plus haute et la  plus basse tem pérature n'ont- 

elles pas lieu aux solstices? — 11 semblerait, d’après les détails dans les­
quels nous venons d’entrer, que, pour un habitant de nos régions tempérées 
boréales, le solstice d’été devrait être l’époque de la température la plus élevée, 
et le solstice d’hiver celle de la température la plus basse, puisque c’est à cés 
époques que les deux causes assignées plus haut ont l’influence la plus grande 
ou la plus faible. 11 semblerait, en outre, qu’à des distances égales d’un sol­
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stice, la hauteur méridienne et la durée du jour redevenant les mêmes, la tem­
pérature devrait aussi redevenir la même : il devrait faire aussi chaud un mois 
avant le solstice d’été qu’un mois après, aussi froid au 20 novembre qu’au 
20 janvier. Or chacun sait qu’il n’en est pas ainsi, que l’été est plus chaud 
que le printemps, et l'hiver plus froid que l’automne. La cause de cette ano­
malie apparente est le temps que la terre met à s'échauffer sous l’action des 
rayons solaires, et à se refroidir par le rayonnement. Ainsi, après le solstice 
d’été, la terre, déjà échauffée par les longues journées de la fin du printemps, 
recevant encore de très-grandes qùantités de chaleur, continue à s’échauffer 
de plus en plus ; mais, à mesure que l’été s’écoule, le rayonnement augmente, 
et il arrive un moment où le sol perd ainsi toute la chaleur qu’il reçoit ; à par­
tir de cet instant, les quantités de chaleur reçues allant toujours en décrois­
sant, c’est le rayonnement qui l’empcrte, et la température diminue. Klle 
s’abaisse ainsi progressivement pendant le reste de l’été et pendant l’automne. 
Après le solstice d’hiver, le soleil remonte lentement vers l’équateur, la du­
rée des jours augmente insensiblement ; mais la faible augmentation de cha­
leur qui en résulte ne suffît pas pour contre-balancer les pertes produites par 
le rayonnement ; la température continue donc à s’abaisser, jusqu’à ce que 
le rayonnement qui diminue, et la chaleur qui croit, produisent des effets 
égaux et contraires. Bientôt le sol gagne plus qu’il ne perd, et la tempéra­
ture commence à s’élever lentement et progressivement. C’est ainsi que le 
maximum et le minimum de la température de chaque année n’ont lieu qu’en- 
viron un mois après chaque solstice. C’est pour cela que l’été, profitant de la 
chaleur recueillie pendant le printemps, est plus chaud que cette dernière 
saison, que précède l’hiver; et que l’hiver, à son tour, précédé de l’automne, 
est plus froid que cette saison, qui a suivi l’été.

C’est par une raison analogue que le maximum de la température du jour 
n’a pas lieu à midi, mais vers 2 heures de l’après-midi, tandis que le 
minimum a lieu vers 2 heures du matin.

844. Autres causes de la variation de la tem pérature. — Les varia­
tions de la température en un lieu donné n’ont pas, eu fait, la régularité que 
leur assigne l’explication précédente II y a d’autres causes qui influent consi­
dérablement sur ces variations : ce sont principalement les vents, les chaînes de 
montagnes et la distribution des terres et des eaux à la surface du globe. Ces 
causes ne sont pas du ressort de l’astronomie ; on les étudie en météoro­
logie.

S4S. Inégale distribution de la chaleur dans les deux hémisphères. 
— Nous avons déjà vu que, dans son mouvement annuel, le soleil reste huit 
Jours de plus au-dessus de l'équateur qu’au-dessous. Nos saisons chaudes 
sont ainsi plus longues que nos saisons froides ; c’est l'inverse pour nos 
antipodes. On voit que, par cette cause, l’hémisphère boréal reçoit un peu 
plus de chaleur que l’hémisphère austral.

846. Influence du périgée et de l’apogée sur les saisons. — D’un 
autre côté, le périgée a lieu en hiver et l’apogée en été. Par conséquent, le

25COSSI. G.
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soleil est plus près de nous au 1er janvier qu’au I”  juillet, ce qui rend nos 
étés un peu moins chauds, et nos hivers un peu moins froids. C’est encore 
l’inverse dans l'autre hémisphère.

847. Ce que serait la tem pérature, si l’écliptique était confondue 
avec l ’équateur. — On voit que la variation de la température pour un lieu 
déterminé, et celle de la durée du jour, sont dues à l’obliquité de l’écliptique. 
Si l’écliptique était confondue avec l’équateur, le soleil chaque jour décrirait 
ce grand cercle, la température serait partout invariable : elle serait brûlante 
sous la zone torride, tempérée comme le printemps dans nos régions, glaciale 
aui pèles. C’est à peu près le cas où se trouve la planète Jupiter.

NOTE XX (n° 217, p. 165).

Sur lu nutation de l ’axe terrestre.

848. Phénomène de la nutation. — Ou sait que l’axe du monde, au 
lieu de. rester immobile, décrit en 20000 ans, autour de l’axe de l’écliptique, 
dans le sens rétrograde, un cône circulaire droit, dont le demi-angle au sommet 
est 23' 27' 15", et que c’est ce mouvement qui produit la précession des équi­
noxes. Mais le cercle, que ce cône intercepte sur la sphère céleste, ne re­
présente pas le lieu véritable des positions successives du pôle; chaque point 
de ce cercle ne doit être considéré que comme une position fictive ou 
moyenne autour de laquelle le pôle oscille, en décrivant en sens rétrograde une 
petite ellipse, dans l’intervalle do 18 ans et demi environ. Les axes de cette 
ellipse sous-tendent des arcs de 18",4 et de 13",75. Ce nouveau mouvement 
du pôle de la terre a reçu le nom de nutation de l’axe. C’est Bradley, l’un des 
plus illustres astronomes anglais, qui en fit la découverte en 1730. Il est dû,

comme la précession, à l’attrac­
tion du soleil et de la lune sur le 
renflement équatorial du globe.

849. Représentation du 
double mouvement de l’axe.— 
Pour se représenter le double 
mouvement de l’axe, produit par 
la précession et par la nutation, 
que l’on conçoive une petite el­
lipse pp'p'", tangente à la sphère 

céleste T en son centre P fig. 1G3), dont le grand axepp"=  18",4 est toujours 
dans le plan du cercle de latitude PPj, et dont le petit axe p'pf"=* 13",75 lui est 
perpendiculaire. Que l’on imagine ensuite le cercle PG parallèle à l’éclip­



ADDITIONS. 387

tique CC', et dont le rayon sphérique est 23° 27' 15". S'il n’y avait pas de 
nutation, le pôle du monde décrirait en 2GOOO ans le cercle PG, dans le sens 
rétrograde. Si, au contraire, la précession n’existait pas, le pôle, en vertu de 
la nutation seule, décrirait, en 18 ans et demi, dans le même sens, la petite 
ellipse pp'p"- Mais, en vertu des deux causes simultanées, le pôle décrit 
l’ellipse, pendant que le centre P se meut sur le cercle. De sorte qu’en 
réalité la trajectoire est une sorte d’épicycloïde sphérique.

880. Position du pôle à un instant donné. — Pour trouver, à un instant 
donné, la situation vraie du pôle sur l’ellipse, Laplace indique la construction 
suivante. Soit PG (fig. 164) le parallèle que décrirait le pôle en vertu de la 
précession seule, et soit P la position qu’il occuperait alors sur ce cercle. Soit, 
en outre, pp'p" l’ellipse que je suppose rabattue autour de son petit axe sur 
le plan du cercle. On dé­
crit un cercle pap" sur le 
grand axe comme diamè­
tre ; on conçut un rayon 
de ce cercle, mû d’un 
mouvement uniforme et 
rétrograde, et parcourant 
la circonférence en 18 ans 
et demi environ ; de telle 
sorte que ce rayon coïn­
cide avec la moitié Pp 
du grand axe la plus voi­
sine de l’écliptique, toutes 
les fois que le nœud moyen 
ascendant de l’orbite lu­
naire coïncide avec le

Fig. 164.

point T . La position de ce rayon mobile étant déterminée par cette condi­
tion, pour l’instant donné, et étant Pa, par exemple, on abaisse de son 
extrémité a une perpendiculaire am sur le grand axe. Le point 6, où cette 
perpendiculaire rencontre l’ellipse, est le lieu vrai du pôle.

ss i. Effets de la nutation. — La nutation produit une petite variation 
dans l’inclinaison de l’équateur sur l’écliptique; nous en parlerons plus loin 
(n° 552). Elle produit en outre une petite variation dans la position de la ligne 
des équinoxes, et par suite dans la précession. Ainsi le nombre 50",2 ne doit 
être considéré que comme la valeur moyenne de la précession véritable. Il en 
résulte que l’année tropique elle-même n’a pas une durée constante, et qu’elle 
éprouve aussi de légères variations ; mais il faut plusieurs siècles pour les 
rendre sensibles.
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Su r la variation des éléments de l ’orbite solaire.

BS2. Diminution progressive de l’obliquité de l’écliptique. — Lorsque 
l’on compare les latitudes des étoiles voisines du point solstitial d’été, mesurées 
à des époques fort éloignées, avec celles que l’on observe aujourd’hui, on trouve 
une variation beaucoup plus faible que celle qui affe cte les longitudes, mais 
qui cependant n’est pas insensible. Certaines latitudes australes sont devenues 
nulles, et même quelquefois boréales. Cette variation, commune à toutes les 
étoiles, s’explique parfaitement, en supposant que l’obliquité de l’écliptique 
a diminué progressivement depuis les anciens astronomes jusqu’à nous. Si ce 
mouvement devait se continuer indéfiniment, il arriverait une époque où l’é­
cliptique coïnciderait avec l’équateur, et où l’inégalité des saisons disparaî­
trait. Mais la théorie prouve que la diminution aura un terme, et qu’après 
s’être approchée de l’équateur d’environ 3° pendant un certain nombre de 
siècles, à raison de 48" par siècle, l’écliptique aura un mouvement en sens 
contraire, et oscillera ainsi entre des limites assez étroites.

11 résulte de cette diminution progressive, qu’autrefois la zone torride avait 
une largeur plus grande, et que les tropiques étaient plus éloignés qu’au- 
jourd’hui de l’équateur. On cite un puits situé à Syène, en Égypte, dont les 
eaux réfléchissaient l’image du soleil à midi, le jour du solstice d'été, du 
temps des astronomes anciens; et l’on ajoute qu’aujourd’hui le soleil ne passe 
plus à son zénith, ce qui est une preuve matérielle du phénomène qui nous 
occupe.

11 faut remarquer que l’obliquité de l’écliptique est affectée d’inégalités 
périodiques, qui altèrent sa diminution progressive, au point qu’elle parait 
quelquefois aller en augmentant. Mais lorsque ces inégalités ont accompli 
leur période, la diminution apparaît évidente.

BB3. Mouvement du périgée. — En comparant les longitudes du périgée 
mesurées à diverses époques, ou reconnaît qu’elles vont toujours en augmen­
tant. Si cette augmentation n’était que de 50",2 en moyenne par année, elle 
serait due uniquement à la précession des équinoxes ; mais elle est plus consi­
dérable, et elle atteint la valeur moyenne de 02"; par conséquent, le périgée 
a un mouvement réel de 12" environ dans le sens direct; c’est ce qu’on 
nomme le mouvement sidéral du périgée solaire.

BB4. Année anomalistique. — Il résulte de là que l’intervalle do temps 
qui s’écoule entre deux passages consécutifs du soleil au périgée est plus long 
qu’il ne serait si le périgée était invariable ; et il est facile de calculer cette 
durée, à laquelle on donne le nom d’année anomalistique (1). En effet, lorsque 
le soleil, partant du périgée, est revenu à la longitude qu’il avait lors du 
passage précédent, et qu’il s’est ainsi écoulé une année tropique t, il n’a réel­
lement parcouru qu’un arc égal à 300° — 50",2, à cause de la rétrogradation

(1) L 'a n o m a l ie du soleil, à un moment donné, est sa dislance angulaire au périgée.
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des points équinoxiaux. Mais, à ce moment, il est distant de 62" de la nou­
velle position du périgée. Le problème est donc le même que celui de deux 
courriers (le soleil et le périgée}, marchant dans le même sens avec des vi­
tesses respectivement égales à 360°—50",2, et à 12" par année tropique. 
Pour avoir le temps a; qui s’écoulera jusqu’à leur rencontre, on remarque que 
le chemin parcouru par le premier pendant ce temps est (360° — 50",2) x , que 
le chemin parcouru par le deuxième est 12"x, et que la différence des deux 
chemins est 62". On a donc (en réduisant 360° en secondes), l’équation

I295949,8x — 12x =  G2.

,, , 62d où x  = -----------1295937,8

Cette fraction d’année tropique, réduite en jours solaires moyens, donne : 

x  =  0j,O1744G.
Ainsi l’année anomnlistique =  3651,242217 +  0,017446 =  3G5i,259663.

sus. Diminution progressive de l’excentricité. — Enfin, l’excentricité 
de. l'orbite solaire diminue lentement d’environ 0,000416612 par siècle, ce qui 
correspond à 14 lieues à peu près par an. Celte variation n’aura pas toujours 
lieu dans le même sens, et l’orbite ne deviendra jamais circulaire.

Telles sont les principales inégalités séculaires des éléments de l’orbite. On 
les nomme ainsi, parce qu’elles sont très-lentes, et qu’elles ont lieu dans le 
même sens pendant un grand nombre de siècles. Les inégalités périodiques, 
au contraire, sont celles dont la période est limitée à un petit nombre d’an­
nées. Mais on doit remarquer avec soin que les unes, comme les autres, sont 
périodiques.

LIVRE IV . — LA LUN E.

NOTE XXI (il» 266, p. 196).

Du calendrier.

ÜBG. — Nous allons donner ici quelques détails sur les calendriers lunaires 
et principalement sur le calendrier ecclésiastique, que son exactitude rend 
propre à servir de base à diverses recherches scientifiques.

BB7. Calendrier des mahométans. — On sait que les maliométans n’ont
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pas pris le mouvement du soleil, mais celui de la lune, pour base de leur 
calendrier. Comme la lunaison est d’environ 29j,5, ils composent leur année 
de 12 mois, qui sont alternativement de 20 et de 30 jours. Elle ne contient 
donc que 364 jours. Mais la lunaison se trouve ainsi plus longue que le mois 
d’environ 0,03 de jour, et les 12 lunaisons surpassent l’année de 01.30. Au 
bout de 25 ans, la différence est de 9 jours ; ils intercalent, en conséquence, 
9 jours dans cet intervalle, en donnant 30 jours à un de leurs mois qui n’en 
a que 29, et cela 9 fois en 25 ans.

L’an 1286 des Turcs commence le 13 avril I8G9 et finit le 4 avril 1870.
SBO. Calendrier ecclésiastique. — Pour exposer les préceptes de ce ca­

lendrier, il nous faut donner quelques définitions.
S89. Cycle lunaire, nombre d'or. — 11 n’y a pas de rapport simple entre 

l’année solaire et la lunaison. Cependant 19 années solaires valent à très-peu 
près 235 lunaisons ; l’erreur est d’un jour environ en 209 ans. Cette période 
de 19 ans, au bout de laquelle les phases de la lune reviennent aux mêmes 
dates de l’année, porte le nom de cycle de Melon ; la première période com­
mence au 1" janvier de l’année qui précéda l’ère chrétienne ; le nombre d’or 
est pour chaque année quelconque, le numéro d’ordre de cette année dans le 
cycle lunaire ; il est 8 pour l’année 1809.

Pour trouver le nombre d’or d’une année quelconque, il faut, d’après ce 
qui précède, compter dans le premier cycle l’année qui a précédé notre ère. 
On ajoute donc 1 au millésime de l’année, et on divise la somme par 19 ; le 
quotient indique le nombre des périodes de 19 ans écoulées, et le reste est le 
nombre d’or.

SCO. Épacte; correspondance avec le nombre d’or. — On appelle 
e'pacte d’une année 1 ’dge de la lune (n° 211) au Ier janvier de cette année. Si 
l’on suppose d’abord que la lunaison est de 29j,5, douze lunaisons ne vaudront 
que 354 jours; et si l’on suppose, en outre, que l’année civile a 365 jouis 
exactement, on voit que, si la lune est nouvelle au commencement d’une cer­
taine année, l’épacte sera 11 pour l’année suivante, 22 pour la troisième an­
née ; elle sera 33 ou 3 pour la quatrième, en supprimant 30, et ainsi de suite; 
car dire que la lune est âgée de 33 jours, c’est dire qu’elle a accompli une lu­
naison entière de 30 jours, plus 3 jours. Or, le 1er janvier de l'année qui pré­
céda notre ère était un jour de nouvelle lune ; si l’on représente par * l’épacte 
de cette année, le tableau suivant, formé en ajoutant il et en retranchant 
30 chaque fois que cela est possible, fournira évidemment les nombres d’or et 
les épactes correspondantes pour chaque année d’un cycle.

Nombre d’or. 1
Épacte.......... *
Nombre d’or. 11
Épacte.........  XX

2 3 4 5 6 7 8  9 1»
XI XXII III XIV XXV VI XVII XXVIII IX
12 13 14 15 16 17 18 19
1 XII XXIII IV XV XXVI VII XVIII

A la vérité, on raisonne ici comme si l’année civile était de 305 jours et 
chaque lunaison de 29),5 exactement, ce qui n’est pas. Mais ces erreurs se
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compensent presque exactement. En effet, d’un côté, en supposant l’année 
de 365 jours, on la fait trop courte de Oi,242256; l’erreur pour 19 ans est 
donc de 19 fois OJ,242256 ou de 41,60286. D’un autre côté, en retranchant 
30, dans le calcul des épactes successives, chaque fois que l’addition de 11 à 
l’épacte précédente donne 30 ou plus, on suppose évidemment la lunaison do 
30 jours ; or cette soustraction se fait six fois dan3 le cycle j on en fait en outre 
une septième, en passant de l’épacte de la dernière année dn cycle, qui est 
XVIII, à celle de la première année du cycle suivant, qui est * ; mais on ne 
retranche alors que 18+ 11  ou 29 jours. On suppose donc ainsi 6 lunaisons 
de 30 jours et une de 29, ce qui donne 209 jours au lieu de 1 fois 29,530588 
ou de 2061,714116 ; c’est une erreur en trop do 21,285884. Quant aux 228 
autres lunaisons qui composent le cycle à raison de 12 par an, on suppose 
chacune d'elles de 29j,5 au lieu de 29j,530588 : c’est, pour chacune, uno 
erreur en moins de 01,030583, ou, pour la totalité, une erreur en moins do 
61,974064. Si l’on soustrait de cette dernière l’erreur en trop 21,285884, il 
reste 41,688180; ce qui représente l’erreur finale en moins, commise sur le 
calcul des 235 lunaisons. On voit que cette erreur compense à peu près celle 
qu’on a commise sur le calcul des années, et qui est 4i,0028G. La différence 
ne vaut pas 01,09 en 19 ans; elle sera de près d’un jour en II cycles ou en 
209 ans. Il faudra donc faire une correction aux épactes pour accorder com­
plètement l’année tropique avec la lunaison.

BGl. Correction des épactes. — On a décidé, à cet effet, qu’à chaque 
année séculaire non bissextile, c’est-à-dire trois fois en 400 ans, on diminuerait 
d’une unité les épactes du tableau précédent : c’est la mélemptose ou équa­
tion solaire. En outre, on est convenu que de trois siècles en trois siècles (en 
1500, 1800, 2100...), on augmenterait les épactes d’une unité: c’est la 
proemptose ou équation lunaire. Il en résulte qu’après 12 siècles, chaque 
épacte a été diminuée de 9 unités, et augmentée de 4 unités; de sorte qu’elle 
a été finalement diminuée de 5 unités en 1200 ans, ou de Oj,87 en 209 ans. 
Ce qui est à très-peu près exact ; le calendrier ecclésiastique corrige d’ail­
leurs encore cette légère erreur. Ces deux corrections s’annulent quelquefois 
l’une par l’autre; ainsi, en 1800, il a fallu diminuer les épactes, parce que 
l’année n’est pas bissextile, et les augmenter, parce que l’année fait partie de 
la période 1500, 1800, 2100, etc., ce qui est revenu à n’y rien changer. Le 
tableau précédent servira, pour tout le xix' siècle, à trouver l’épacte d’une 
année, connaissant le nombre d’or. En 1900, les épactes seront diminuées 
d’une unité.

662. Dates des néoménies d’une année. — Connaissant l’épacte pour 
une année, c’est-à-dire l’âge de la lune au l«r janvier, on lui ajoute ce qui lui 
manque pour faire 30, et l’on trouve la date de la première nouvelle lune de 
l’année. Ainsi, en 1869, l’épacte est XVII ; donc, 13 jours après, c’est-à-diro 
le 14 janvier, la lune est nouvelle. Pour avoir les dates des autres nouvelles 
lunes, il suffit d’ajouter alternativement 30 et 29 jours à celle-ci j ces calculs 
sont faits d’avance dans le calendrier perpétuel.
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SG3. Différence entre la nouvelle lune ecclésiastique et la  nouvelle 
lune astronomique. — Il faut faire ici une remarque importante; La nou­
velle lune que l’on détermine ainsi, à l’aide de l’épacte, n’est pas la nouvelle 
lune astronomique, qu’on ne voit pas, puisque l'astre est alors entre le soleil 
et la terre, mais la nouvelle lune du calendrier ecclésiastique, qui suit la 
première de deux jours, et qui est visible pendant quelques instants, pour la 
première fois, un peu après le coucher du soleil, sous forme d’un croissant 
très-délié (n° 239). C’est ainsi que la nouvelle lune de janvier 1869 a lieu le 12, 
à 7 heures 2 minutes du soir, d'après XAnnuaire, tandis que notre calcul 
la rapporte au 13 seulement. 11 résulte de là que, pour avoir la date de la 
pleine lune, il faut ajouter 13 jours seulement, et non pas 15, à la date de la 
nouvelle lune.

8G4. Date de la fête de Pâques. — Les détails dans lesquels nous venons
d’entrer ont pour but principal d’expliquer d'après quelles règles se détermine 
la date de la fête de Pâques, de laquelle dépendent les dates des autres fêtes 
mobiles de l’année. D’après les décisions du concile de Nicée, qui ont été 
conservées dans la réforme grégorienne, la fête de Pâques doit se célébrer 
le dimanche qui suit le jour de la première pleine lune qui tombe après le 
20 mars. Cette pleine lune ne doit donc pas arriver avant le 21 mars, et, par 
suite, la nouvelle lune précédente avant le 8 mars (13 jours plus tôt). D'a­
près cela, si l’on veut calculer la date de Pâques pour 1869, on remarque, 
comme on l’a vu plus haut, que, l’épacte étant XVII, la première nouvelle 
lune a lieu le 14 janvier, et la troisième le 14 mars; en ajoutant 13 à cette 
dernière date, on trouve le 27 mars; la pleine lune pascale arrive donc le 
27 mars. Au moyen de la lettre dominicale, le calendrier perpétuel montre 
que le dimanche suivant est le 28 mars : c’est le jour de la fête (1).

B6S. Limites de cette fête. — Si la pleine lune pascale tombe le 21 mars 
et que ce jour soit un samedi, Pâques arrive le lendemain 22 ; c’est la pre­
mière limite. Si, au contraire, la pleine lune de mars arrive le 20, c’est la 
suivante qui est la pleine lune pascale ; elle tombe le 30° jour au delà, c’est- 
à-dire le 18 avril ; si ce jour est un dimanche, la fête est remise au dimanche 
suivant, 25 avril. C’est la deuxième limite. La première circonstance s’est 
présentée en 1818 ; et la deuxième se présentera en 1886.

tîGG. Fêtes mobiles. — Lorsque la fête de Pâques a été déterminée pour 
une année, on place les principales fêles mobiles d’après les règles suivantes :

L a  Se/jtungésime, le  9® d i m a n c h e  ou le  6 3 ' j o u r  a v a n t  P â q u e s ;
La Quinquagésime, le 7 ' dimanche ou le 49 'jour avant Pâques-
Les Cendres, le mercredi suivant ;
Les Rameaux, le 7' jour avant Pâques ;
V  Ascension, le jeudi, 4C' jour après Pâques;
La Pentecôte, le 7' dimanche ou le 49' jour après Pâques;

(I) La tradition porte que la Résurrection de Jésus-Christ eut lieu peu après l’équinoxe 
du pr ntemps, et suivit une pleine lune. Le concile supposait que l'équiuoxe arrivait 
o jours le 21 mars : c’est là la cause de sa décision.

3 0 2
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La Trinité, le 8e dimanche après Pâques ;
La Fête-Dieu, le jeudi suivant, deux mois jour pour jour après le Samedi- 

Saint.
Les 4 dimanches de 1 'Avent sont ceux qui précèdent Noël.
Enfin, les Quatre-Temps sont placés aux mercredis, vendredis et samedis 

qui suivent: i" les Cendres; 2° la Pentecôte; 3° le 14 septembre; 4° le 
3e dimanche de l’Avent.

8C7. Fêtes fixes. — Le calendrier contient, en outre, aux autres dates, 
les noms des saints et des fêtes fixes, dont les principales sont :

On y inscrit en même temps les phases de la lune, les dates des 
éclipses, etc. Quant aux prédictions sur les événements futurs, sur les varia­
tions de température et les changements de temps, dont a soin à’enrichir les 
almanachs, avons-nous besoin do dire que ce sont des présages de tout point 
ridicules, derniers vestiges des rêveries des astrologues ?

868. Indiction rom aine. — Pour ne rien omettre, disons encore quel’tfl- 
diction romaine est un cycle de 15 ans, qui n’a rien d’astronomique, car il est 
relatif à un mode de perception des impôts sous les empereurs romains. 
Comme on en a conservé l’usage à Rome, nous dirons seulement que, si l’on 
ajoute 3 au millésime de l’année, et qu’on divise la somme par 15, le reste 
est le numéro d’ordre de l’année dans le cycle; s’il n’y a pas de reste, on 
prend 15. On trouve ainsi 12 pour numéro d’indiction romaine en 1869.

Si l’on fait le produit des trois nombres 28, 19, 15, qui représentent les 
cycles solaire, lunaire et d’indiction, ce produit constitue la période Julienne 
de 7980 ans, imaginée par Scaliger ; elle a commencé l’an 4714 avant J.-C. 
iVoir la Notice de M. Arago, Annuaire de 1851.)

La Circoncision,
V  Épiphanie,
La Purification,
U Annonciation,
La Saint-Jean d’été,
La Saint-Pierre et la Saint-Paul,
V  Assomption,
La Nativité,
La Toussaint,
La Conception,
Et Noël,

le 1er janvier; 
le G janvier ; 
le 2 février; 
le 25 mars ; 
le 24 juin ; 
le 29 juin ; 
le 15 août ; 
le 8 septembre ; 
le 1" novembre; 
le 8 décembre ; 
le 25 décembre.
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NOTE XXII (n° 267, p. I9G).

C a l c u l  d u  d ia m è t r e  a p p a r e n t  d e  l a  lu n e ,  à  l a  d is ta n c e  
m o y e n n e .

869. — Il ne faut pas confondre le diamètre apparent moyen d’un astre avec
son diamètre apparent à la distance moyenne. En ellet, désignons par d et d’ 
les distances apogée et périgée de l’astre, et par 8 et 8' ses diamètres appa­

rents correspondants j la distance moyenne est, par définition, ^  , et le
S | S'diamètre apparent moyen est —-— • Désignons par A le diamètre apparent 

à  la distance moyenne ; nous aurons, en vertu du principe du n° 131,

dS =  a' 8' =  ^ ± ^ A .  (I)2

On tire de là successivement :

d 8' d + d '  8 + 8 '
d '  8 ’ d '  S *

. d +  d' 28' ,Mats ---- -,— =  — : donc :
a  A  ’

8 — ô' 2o' . 5d
6 A ^ o - t- 8 'j  v '

Or on sait que la moyenne géométrique V ^86' est toujours plus petite que
S> I W y -------

la moyenne arithmétique —-— ; donc A est plus petit que V  86', et, à plus

,  . 8 +  8' forte raison, que —-—  •

NOTE XXIII (n° 270, p. 197).

In é g a lité s  d u  m ouvem ent de la  lune.

870. — Le mouvement de la lune est soumis à des inégalités diverses, 
comme celui de la terre. La durée de la révolution sidérale diminue lente-
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ment, et la longueur du demi-grand axe de l’orbite reste seule à peu près in­
variable. Disons quelques mots des plus remarquables de ces inégalités, qui 
artecteut la longitude de l’astre.

871. Équation du centre. — Si le mouvement angulaire de la lune en 
longitude était uniforme, il serait représenté par un seul terme, proportionnel 
au temps, de la forme mt, m  étant le mouvement dans l’unité de temps. Hip- 
parque, en observant la lune dans les syzygies, s’aperçut que sa position dif­
férait de celle que lui aurait assignée ce mouvement moyen; et il en conclut 
qu’il y avait là une inégalité, qu'il chercha à représenter par un mouvement 
uniforme sur un cercle non concentrique à la terre. Cette première inégalité 
a reçu le nom d'équation du centre ; elle est représentée par l’expression

Équation du centre =  G” 20’ X  sin A,

A étant l’anomalie moyenne de la lune, ou l’angle que fait avec le grand axe 
le rayon vecteur d'une lune fictive, qui parcourrait l’orbite d’un mouvement 
uniforme, en partant du périgée en mCme temps que la lune vraie.

872. Évection. — Plus tard, Ptolémée, observantia lune dans les quadra­
tures, trouva qu’alors la formule d’Hipparque ne suffisait plus pour donner 
la position de l’astre. Il conclut qu’il existait une seconde inégalité, dont il 
chercha à représenter aussi les variations. C’est l’évection; elle a pour ex­
pression

Élection — 1° 20’ X  sin (2 D — A),

D étant la distance angulaire de la lune au soleil. Dans les syzygies, elle se 
confond avec l'équation du centre, qu’elle diminue constamment ; car elle est 
alors égale à — 1” 20' sin A.

873. Variation. — Ces deux inégalités ne suffisent plus pour faire concor­
der le mouvement calculé de la lune, dans les octants, avec les résultats de 
l’observation. 11 y a donc une troisième inégalité, qui a son effet maximum 
dans les octants; elle disparaît dans les syzygies et dans les quadratures. Elle 
a été découverte par Tycho-Brahé, et nommée la variation ; elle ne dépend 
que de la distance angulaire de la lune au soleil, et a pour expression

Variation =  30' X  sin 2 D.

874. Équation annuelle. — Enfin, quelque temps après, Kêpler découvrit 
une quatrième inégalité, plus faible, qui né dépend que de l'anon.alie moyenne 
a du soleil, c’est-à-dire de l’angle que le rayon vecteur mené au soleil moyen 
fait avec le grand axe de l’orbite terrestre. C’est l'équation annuelle; elle est 
due à ce que le mouvement de la lune s’accélère quand celui du soleil se ra­
lentit, et réciproquement; elle a pour expression

Équation annuelle =  11',16 X  sin a l

Le mouvement vrai de la lune en longitude est donc représenté par l’ex­
pression
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ml -+- G°20' sin A +  1“20' sin (2D — A) +  36' sin 2D +  11',(6 sin a.

S7S. — Il y a d’autres inégalités qui affectent la latitude et le rayon vec­
teur de la lune. Mais elles ont une valeur beaucoup moindre, et nous n’en par­
lerons pas. On voit, par les formules qui précédent, que les quatre grandes 
inégalités dont nous venons de parler sont périodiques. D’autres sont sécu­
laires, c’est-à-dire que leur période comprend un intervalle de temps consi­
dérable.

NOTE XXIV (n° 271, p. 19S).

Mesure de la parallaxe delà Lune.

S7G. — Soient EPE'P' le méridien commun aux deux observateurs (fig. 165), 
PP' l’axe, et EE' la trace de l’équateur sur le méridien ; soit S la position de 
l’astre au moment du passage. Les deux observateurs, placés l’un en A (Ber-

Fig. IC5.

lin), l’autre en A' (Cap), mesurent, au même instant, ses distances zénithales 
méridiennes ; soient Z et Z' les valeurs obtenues, corrigées de la réfraction. 
Désignons par p et p' les parallaxes de hauteur correspondantes. En joignant 
SO, on a :

A SO =p, A’SO =  p', ASA' =  p +  p \

Dans le quadrilatère AOA'S, dont la somme des angles est égale à 360°, 
on a :

SAO =  180° — Z, SA'O =  180° — Z', AOA'=X +  X',
X et X' étant les latitudes des points d’observation ; donc i
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180" — Z +  180° — Z' +  X +  X '-t-p+ p ' =  3G0°,
d’où

p + p ' = z + z ' — x — y. ( i )

D’un autre côté, désignons par P la parallaxe horizontale de l’astre, qui est 
la même pour A et pour A', puisque la terre est supposée sphérique; et ap­
pliquons la formule de la note XV ; nous aurons :

p = P s in Z ,  p' =  PsinZ ',

d’où p-J-p ' =  P (sin Z +  sin Z'). (2)

Égalant ces deux valeurs de p + p ',  en a :

P (sin Z +  sin Z') =  Z +  Z' — X — X\

., . „  Z +  Z' — X —X'
sinZ +  sinZ '

ou enfin, d’après une transformation connue qui rend l’expression calculable 
par logarithmes, - , •ar-.i,- «

C’est à l’aide de cette formule que Lacai/le et Lalande ont déterminé, en 
175G, la parallaxe horizontale moyenne de la lune P =  57'.

S77. Remarques. — Nous avons négligé, dans l’exposé précédent, quelques 
corrections nécessaires. Ainsi les deux observateurs A et A' ne sont pas exac­
tement sous le même méridien, lorsqu’ils observent le passage de la lune ; 
de plus, les verticales des lieux d’observation ne sont pas exactement le pro­
longement des rayons OA, OA' de la terre; enfin, le3 rayons eux-mêmes ne 
sont pas égaux. Nous n’entrerons pas dans le détail du calcul de ces correc­
tions ; mais nous dirons que les observateurs ont eu soin d’en tenir compte.

NOTE XXV ( n os 300 et suiv., p. 210).

Calcul des éclipses de IiUne.

8 7 0 .  F o r m u l e s  p r é l i m i n a i r e s .  —  N o t r e  b u t ,  d a n s  c e t t e  n o t e ,  e s t  d e  d é ­

v e lo p p e r  u n e  m é th o d e  é l é m e n t a i r e ,  m a is  c o m p lè t e ,  p o u r  le  c a l c u l  d e s  é c l ip s e s  

d e  l u n e .  N o u s  r e p r e n d r o n s  d ’a b o r d  à  c e t  e f fe t ,  s o u s  u n e  f o r m e  u n  p e u  d if f é ­

r e n t e ,  q u e l q u e s - u n s  d e s  r é s u l t a t s  a u x q u e ls  n o u s  s o m m e s  a r r i v é s  d a n s  le  c o r p s  

d e  l ’o u v r a g e  ( n "  3 0 0  e t  s u iv . ) .



398 ADDITIONS.

On sait que, lorsqu’un angle a est très-petit, on peut, avec une grande 
approximation, remplacer son sinus par la longueur de l’arc que l'angle in­
tercepte dans le cercle dont le rayon est 1. Il eu résulte que l’on peut écrire

sin a a . a . ...
—.— —ï  =  -77 t ou sin a =  -77 sin 1":611) l" 1" l" ’

or est le nombre de secondes renfermées dans l’angle a ; donc, si l’on a la

la précaution d’évaluer l’angle a en secondes, on aura :

sin a =  a sin 1", (I)

formule commode dont nous nous servirons souvent.
Si l’on désigne par P la parallaxe horizontale d’un astre, dont la distance 

à la terre est représentés par d, on a évidemment, r  étant le rayon de la 
terre,

d =  — > et, par conséquent, d - ——-— - .  (2)sin P ’ P sin 1" y 1

Si l’on représente par R le rayon de l’astre, et par S son demi-diamètre 
apparent, vu de la terre, on a aussi :

U =  rf sin ô — dô sin 1",

et, par suite, R =  ~  r, [3}

On a trouvé (n“ 305), pour la longueur du cône d’ombre pure que la terre 
projette derrière elle,

n!=7--

En substituant dans cette expression les valeurs de d  et P«, (2) et (3), on 
trouve cette nouvelle formule

E==( 3 - P ;  sin i " r ’

8 et P étant le demi-diamètre apparent et la parallaxe du soleil, évalués en 
secondes.

D’ailleurs, si P, et 8, sont la parallaxe horizontale et le demi-diamètre ap­
parent de la lune, la distance de cet astre à la terre est :

, ________ r
1 — P, sin x" >

i l, par suite, le rapport des deux longueurs x  et tf, est : 

d, 8 - P  W

Or les valeurs maximum et minimum des quantités P, Pi 8, S,, sont i
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Maximum.
P = 8 " , 75 
8 = 1 G 'IS "=  978" 
P1 =  61'27" =  3687" 
g, =  16'47" =  1007"

Minimum.
P = 8 " , 46 
S =11/45" =  915" 
P, =  53'53" =  3233" 
8j -  I4'43" =  8S3"

Si l’on substitue dans la formule (5) celles de ces valeurs qui fourniront le 
maximum et le minimum du rapport, on trouve

max. de — — 3,9 "1 et min. efe— =  3,3:

donc la lune peut pénétrer dans le cône d’ombre pure de la terre.
On sait d’ailleurs (n° 307) que le demi-diamètre apparent du cône d’ombre, 

à la distance où la lune peut le traverser, a pour expression

ë =  Pi -f P =  8, (0)

et que sa valeur n’est jamais au-dessous de 37'43", tandis que le demi-dia­
mètre apparent de la lune n’est jamais supérieur à 16'47". Donc la lune peut 
pénétrer entièrement dans le cône d’ombre, et leséclpses totales sont possibles.

579. Condition nécessaire et suffisante pour qu’il y a it éclipse à 
un instant donné. — Décri­
vons du centre T de la terre 
comme centre (fig. 166), une 
sphère PEP'E', ayant pour 
rayon la distance TL à la 
lune. Soient EE' la trace du 
plan de l'écliptique, dans le­
quel se meut le soleil dans 
l’hypothèse du mouvement 
apparent, et VV' l’orbite de 
la lune. Soit L la position de 
la lune au moment de l’oppo­
sition ; elle est alors dans le 
même cercle de latitude LPS 
que le soleil S. Le cône d’om­
bre ayant pour axe ST, le 
centre de la section faite par 
la sphère dans ce cône est, à ce moment, en G, sur l’écliptique et sur le 
cercle de latitude PL. La distance des deux centres est alors LG, latitude de 
la lune.

Fig. 168.

Soient, à un autre moment, G' et L 'les positions des centres de l’ombre et 
de la lune ; leur distance A est alors L'G'. Pour qu’il y ait, à cet instant, 
éclipse totale ou partielle, il faut et il suffit que les deux cercles ne soient 
pas extérieurs l’un à l’autre, c’est-à-dire que A soit plus petite que la somme
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des deux rayons; donc, la condition nécessaire et suffisante est

A < p  +  S„ on A < P  +  P1 —8-+-8,. (7)

Or le second nombre de cette inégalité a pour maximum G2'38", et pour 
minimum b'X’i t f .  On peut donc, vu la petitesse de ces limites, considérer 
comme plane la portion de la sphère céleste où s'exécutent les mouvements de 
l'ombre et de la lune pendant la durée d’une éclipse. D’ailleurs, si l’on mène 
le cercle de la latitude PL'D, chacun des deux arcs G'D et L'D est moindre 
que A ; donc l’éclipse ne peut avoir lieu que près de l’opposition, et lorsque la 
latitude delà lune est fort petite, c’est à-dire lorsque la lune est dans le voi­
sinage de l’un de ses nœuds. Nous allons calculer, d’après ces conditions, la 
distance des centres de la lune et de l’ombre.

380. Distance des centres de la lune et de l'ombre. — Soit t un temps 
très-court évalué en heures, compté à partir de l’opposition, positif après, né­
gatif avant. Soient, à ce moment, L' et G' les positions des centres de la lune 
et de l’ombre. On peut considérer comme rectilignes et uniformes les mou­
vements de la lune et de l’ombre pendant toute la durée d’une éclipse ; d’ail­
leurs le mouvement de l’ombre est le même que celui du soleil. Soit donc, 
au moment de l’opposition, m le mouvement horaire du soleil en longitude, 
évalué en secondes, c’est-à-dire l’arc décrit par cet astre en une heure sur 
l’écliptique ; et soient, à la même époque, né et ré les mouvements horaires 
de la lune en longitude et en latitude, c’est-à-dire les variations en une heure 
de sa longitude et de sa latitude ; ces trois nombres sont donnés par les tables. 
On a :

GD =  mit, GG’ =  mt, d’où G'D =  [né — m) t.

Si l’on mène l’arc LK, parallèle à l’écliptique, jusqu’à la rencontre du cercle 
de latitude PL'D, on a :

L'K =  rét.

Par suite, si l’on désigne par X la latitude de la lune, au moment de l’opposition, 

L'D =  X +  n’t.

Cela posé, le triangle G'L'D, rectiligne et rectangle, donne :

GÏ72 =  G7!?  + I / D 2,

c’est-à-dire A8 =  [né — ni)811 +  (X +  rét)8, (8)

formule dans laquelle les nombres, m, né, n’, sont donnés par l’éphéméride. 
et X se calcule comme on l’a vu au n“ 310.

381. Remarque. — Nous n’avons construit la figure 166, qu’afin d’indiquer, 
aussi clairement que possible, les éléments dont se compose le triangle 
L'G'D. Si l'on a bien compris ce qui précède, on pourra aisément la rempla­
cer par une autre figure beaucoup plus simple. Imaginons, en effet, un plan
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tangent à la sphère, au point G de la figure 164. Soient (fig. 167) EE' et VV' 
les traces de l’écliptique et de l’orbite lunaire sur ce plan ; O est le nœud as­
cendant. On pourra supposer que, pendant la durée de l’éclipse, le centre 
de l’ombre se meut sur EE', 
et le centre de la lune sur 
VV'. Soit G la position du 
centre de l’ombre, au mo­
ment de l’opposition ; le 
centre de la lune est alors 
en L, sur la perpendiculaire 
GL, qui représente le cercle 
de latitude. Après le temps /, les deux centres sont G' et L', et leur distance 
est la droite G'L'. Si l’on mène la perpendiculaire L'D et la parallèle LK à EE', 
on voit que, comme au numéro précédent, on a :

LG =  X, GG ’= m t,  LK =  G D =  mit, L'K =  n'<;

et le triangle rectangle L'G'D donne :

r G '^ G ^  +  ÜD*,

ou a2 =  (to' — «J)î(î +  a  +  n7)s.
C’est la formule (8).

sas. Transformation de la formule. — Nous poserons, pour simplifier,

ri =  M sin I, m' — m =  M cos I ; (9)

M étant un nombre positif, et I un angle compris entre — ^  et -)- ^ , dont les 

valeurs se déterminent par les formules

_ n’ ri m '— m _______________
tans 1 =  m' — m ’ M — Sïïïl Eôsl ^ «'* 4 -  — (l0>

On voit que M représente le mouvement synodique (ou relatif) horaire de la 
lune ; et l’on dit que I est Y inclinaison à l’écliptique de V orbite relative.

Si l’on substitue les valeurs (9) dans la formule (8), on a :

A2 =  M* I2 cos2 I +  (X +  M t sin I)2,

ou a« =  M2 <2 +  2MX /sin  I +  X2;

a jgmeutant st diminuant le second membre de ),2 sin2 I, il vient i 

A2 =  (Mf +  Xsin Ij2 +  >2 C0S2 I. (U)

885. Conséquences. — Sous cette forme, on voit que la distance des cen­
tres A ne peut pas prendre de valeur inférieure à la valeur absolue de

5. cos I, et qu’elle atteint cette valeur, lorsque t =  — ---^  1 • Or on sait que,

26COSU. G.
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pour qu’il y ait éclipse, il faut et il suffit que l’on ait A <  P P, — ê +  Sj. 
Cette condition nécessaire et suffisante équivaut donc à celle-ci :

± X  cos I <  P +  P4 — 8 +  8t , d’où ± ) .  < '" c 5 n ~  ‘ > (12)

à l’instant de l’opposition.
Il est facile de voir que I est toujours plus grand que 5° 9', car 
W v!—;------ ~> —; ; mais que 1 n’atteint jamais G», car m n’est guère que le trei-m — m m "

zième de m'. D’ailleurs le maximum de P +  P i— 8 +  8, est fil' 38", et le mi­
nimum 52' 26". Donc le maximum du second membre de l’inégalité (12) est

38;/ 52f-----— 5 ou G2' 59", et le minimum est *— , ou 52' 38". Donc :cos 6° cos 5°

1° Si, à l'instant de l’opposition, la latitude cle la lune est en valeur abso­
lue, inférieure à V =  52' 38", il y a certainement éclipse partielle ou totale.

2° Si, à l’instant de l’opposition, la latitude de la lune est supérieure à 
V  =  62' 59", il ne peut y avoir éclipse.

3° Si, à rinstant de l’opposition, la latitude de la lune est comprise entre 
52' 38" et 62' 59", l’éclipse est douteuse. Il faut, dans ce cas, calculer rigou­
reusement la formule (12), qui donne seule la condition nécessaire et suffisante.

Nous supposerons, dans ce qui va suivre, que l’on ait reconnu, par ce qui 
précède, l’existence de l’éclipse.

884. Détermination de la plus grande phase. — La plus grande phase 
de l’éclipse a lieu, lorsque la distance des centres A est minimum. Soient A0 
et ta, cette distance minimum, et l’époque à laquelle elle a lieu ; on a trouvé 
(n° 583) :

A0 =  ±  à cos J, t0 =  — -  1 ; (13)

(et il s’agit de déterminer la grandeur de cette phase.
A un instant quelconque de l’éclipse, celui des diamètres du disque lu­

naire qui est dirigé vers le centre de l’ombre est en partie ou eu totalité
plongé dans l’ombre. Le rapport 
de celte partie au diamètre total 
est ce qu’on nomme la phase A 
l’instant considéré. Ce rapport est 
t pendant toute la durée de l’é­
clipse totale; il est plus petit que I, 
pendant les éclipses partielles.

Pour qu’à un instant donné, la 
phase soit égale à I, il faut et il 

suffit qu’à ce moment la di-t; ne; des cen’res soit inférieure (fig. 168) ou égale 
(fig. 169) à la différence t’es rayons, c’est à-dire que l’on ait GL <  GC — LA,

Fia. 168. Fig. 169,

A < P  +  P i - S  -  ôj,
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d o n c ,  p o u r  q u ’u n e  é c l ip s e  p u i s s e  ê t r e  t o t a l e ,  i l  f a u t  e t  i l  s u f f i t  q u e  le  m i n i ­

m u m  A 0 d e  À  s a t i s f a s s e  à  l a  c o n d i t io n

A 0 < P  +  P , - S - 8 ,  ;  c e  q u i  r e v i e n t  à  ). -
-o,

cos 1 (1 4 )

O r  le  m a x im u m  d u  n u m é r a t e u r  e s t  3 1 ' 8 " ,  e t  s o n  m in im u m  e s t  2 0 ' 5G " ; d o n c

31* 8 "
le  m a x im u m  d u  s e c o n d  m e m b r e  d e  l ’i n é g a l i t é  ( 1 4 )  e s t ----------,  o u  3 1 ' 1 8 " ,  e t

c o s  <j°
2 0 '  5 6 "

s o n  m i n i m u m  e s t  -------— , o u  2 1 '.  D o n c :cos 5°
1 » S i ,  à  l ’in s ta n t de  r  opposition, la  la ti tu d e  de la lune est in fé r ieu re  à  

X' =  2 1 ',  l ’éclipse to ta le  est certa ine.
2 °  S i ,  à l’in s ta n t d e  l ’opposition , la  la titu d e  d e  la  lune  est supérieure  à  

V ' =  3 1 ' 1 8 " ,  l ’éclipse to ta le  est im possib le.
3 °  S i, à l  in s ta n t d e  l ’opposition , la la titu d e  est co m p rise  en tre  2 1 ' et 3 1 ' 1 8 " ,  

l ’éclipse to ta le  est douteuse. I l  f a u t ,  d a n s  c e  c a s ,  c a l -  ; 

c u l e r  r i g o u r e u s e m e n t  l a  f o r m u le  (1 4 ) ,  q u i  d o n n e  l a  c o n ­

d i t i o n  n é c e s s a i r e  e t  s u f f i s a n te .

D é s ig n o n s  p a r  9  l a  p h a s e  à  u n  i n s t a n t  o ù  l ’é c l ip s e  

n ’e s t  p a s  t o t a l e ,  q u o iq u ’e l l e  p u is s e  l ’ê t r e  à  u n  a u t r e  

m o m e n t .  L a  p o r t i o n  C B  (fig . 1 7 0 ) d u  d i a m è t r e  é c l ip s é  

d e  l a  lu n e  e s t ,  à  c e t  i n s t a n t ,  l ’e x c è s  d e  l a  s o m m e  d e s  

r a y o n s  s u r  l a  d i s t a n c e  d e s  c e n t r e s ,  G C  +  L B  —  G L , 

c ’e s t - à - d i r e  P  +  S j  —  A  ; d o n c  l a  p h a s e  e s t  :

p +  S, —  A
ç ; as!—  (,s)

S i ? o  e s t  l a  p h a s e  m a x im u m  d a n s  u n e  é c l ip s e  p a r t i e l l e ,  o n  a :

? - = P +  X ~ A--  (,6)

O n  é v a lu e  c e t t e  p h a s e  e n  d é c im a l e s .  A u tr e f o i s  o n  l ’é v a l u a i t  e n  d o u z iè m e s  

d ’u n i t é ,  q u ’o n  a p p e l a i t  d o ig ts ;  o n  n e  le  f a i t  p lu s  a u j o u r d ’h u i .

S 8 8 . Instant d’une phase quelconque. —  S o i t  9  u n e  p h a s e  q u e l c o n q u e  

d o n n é e  p l u s  p e t i t e  q u e  1 ;  l a  d i s t a n c e  c o r r e s p o n d a n t e  A e s t  d o n n é e  p a r  l a  f o r ­

m u le  (1 5 )

A  =  p  +  8 1  — 2 8 !  9 . (1 7 )

C o n n a i s s a n t  A , o n  d é t e r m i n e  t  p a r  l ’é q u a t i o n  (1 1 ) , q u i ,  r é s o lu e ,  d o n n e

/  =  _ i H L L ±  A s X* cos*  I ,  

o u ,  e n  i n t r o d u i s a n t  t0 e t  A 0 ( f o r m .  1 3 )

A *

F ig .  1 7 0 .
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A in s i i l  y  a  d e u x  i n s t a n t s ,  é g a le m e n t  é lo ig n é s  d u  m i l ie u  d o  l 'é c l i p s e ,  q u i  

c o r r e s p o n d e n t  à  l a  m ê m e  p h a s e .

8 8 6 . Instants du commencement et de la f in  de l ' é c l i p s e ;  sa du­
rée. —  A u  m o m e n t  o ù  c o m m e n c e  l’é c l ip s e ,  c o m m e  a u  m o m e n t  o ù  e l le  f in i t , o n  

a  9  =  0 ,  e t  p a r  s u i t e  A  =  p  +  8 ] ; d o n c ,  e n  d é s i g n a n t  c c s  i n s t a n t s  p a r  f ,  e t  

p a r  ( 2, o n  a  :

; x _______________ ; (to)
-2 =  +  J J  r  (P  +  5 ,)*  —  A  0S |

e t  p a r  c o n s é q u e n t  l a  d u r é e  t o t a l e  d e  l ’é c l ip s e  e s t

0  =  ' , _ f i = 2 j / ( P  +  Si) s _ A o2. (2ù)

S i l ’o n  v e u t  a v o i r  l a  d u r é e  m a x im u m  d ’u n e  é c l ip s e ,  i l  f a u t  d ’a b o r d  f a i r e

2 *
A 0 =  0  d a n s  l a  f o r m u le  (2 0 ) ,  c e  q u i  d o n n e  0  =  —  (p  8 j )  ; i l  f a u t  e n s u i t e

p r e n d r e  p o u r  p  +  S i s a  v a l e u r  m a x im u m  6 2 ' 3 S "  o u  3 7 5 8 " .  O n  p e u t  d ’a i l l e u r s  

p r e n d r e  p o u r  M l e  m o y e n  m o u v e m e n t  s y n o d iq u e  h o r a i r e  d e  l a  l u n e ,  c ’e s t  i -  

1 2 9 6 0 0 0 "  5 4 0 0 0 "  .  ,  ,  .  . .  , „ 3 7 5 8  X  2 9 ,5 3 ,

d l r e  2 4 X 2 9 , 5 3  0U l ô ^ T  L a  f° r a lU ,°  deV IC nt ^  8 ' 2 7 0 0 0  h e U re S ’

o u  4 6, U .

A in s i  u n e  é c l ip s e  d e  lu n e  n e  p e u t  p a s  d u r e r  p lu s  d e  4  h e u r e s .

8 8 7 .  I n s t a n t s  o ù  c o m m e n c e  e t  o ù  f i n i t  l ’é c l i p s e  t o t a l e  ; s a  d u r é e .  —  

L ’é c l ip s e  t o t a l e ,  q u a n d  e l le  a  l i e u ,  c o m m e n c e  a u  m o m e n t  o ù  ç  a t t e i n t  l a  v a ­

l e u r  1 , c ’e s t - à - d i r e  o ù  l ’o n  a :  A  =  p  —  8 , ;  e l le  d u r e  t a n t  q u e  A  d é c r o î t  à  

p a r t i r  d e  c e t t e  v a l e u r ,  e t  e l l e  f in i t  l o r s q u e  A , a p r è s  a v o i r  p a s s é  p a r  s o n  m i n i ­

m u m  A 0, r e p r e n d  l a  v a l e u r  p  —  8 ,  p o u r  l a q u e l l e  9  =  1 . O n  a u r a  d o n c  le s  

d e u x  i n s t a n t s  t \  e t  l \ ,  o ù  c o m m e n c e  e t  o ù  f in i t  l ’é c l ip s e  t o t a l e ,  e n  p o s a n t ,  

d a n s  l a  f o r m u le  ( 1 8 ) ,  A  =  p  —  8 ,  ;  c e  q u i  d o n n e  t

<1 =  '0 -  jj (P -  Si)2 -  V ,
. _______________  (SI)

/ w o + j ï  y  (P —  Sx;2 —  v -

P a r  s u i t e ,  l a  d u r é e  d e  l ’é c l i p s e  t o t a l e  s e r a  :

0 ’ =  t's -  i ' t  =  1 ( p  _  Sj)* -  Â0T  (22)

P o u r  a v o i r  l a  d u r é e  m a x im u m  d e  l ’é c l ip s e ,  i l  f a u t  d ’a b o r d  f a i r e  A0 =  O d a n s

2
c e t t e  f o r m u l e ,  ce  q u i  d o n n e  6' =  —  (p —  8 t ) ; i l  f a u t  e n s u i t e  p r e n d r e  l a  v a l e u r

5 4 0 0 0 "
m a x im u m  d e  p  —  8„  q u i  e s t  3 1 '8 " ,  o u  1 8 6 8 " , e t  e n f in  p o s e r  M =  -  ■ • O n

2 D ,0 0

, 1 8 0 8 X 5 0 ,5 3  , c W f ,
t r o u v e  a l o r s  0 =  ■— -  ^ -------h e u r e s ,  o u
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Ainsi une éclipse totale de lune ne peut pas durer plus de 2 heures.
B88. Éclipse centrale. — S’il arrive que A0 =  0, on a X =  0. On dit alors 

que l’éclipse e \  -entrale. La lune est à l’un de ses nœuds, au moment de l’op­
position. C’est dans ce cas que la durée de l’éclipse atteint son maximum.

380. Entrée de la lune dans la pénombre ; sortie. — On calculera tout 
aussi facilement le moment où la lune entre dans la pénombre et celui où elle 
en sort. En effet, à l’un de cos instants, la distance des centres A (fig. 102, 
p. 217) est la somme des demi-diamètres de la lune et de la pénombre. Or le 
demi-diamètre p' de la pénombre est l’angle /TO, et l’on voit aisément que
l’on a :  /TO — T/O'-f- /OT ;
et comme /O'T =  CO'S =  CTS +  TCO’ = 8  +  P,

on en conclut p '=  Pj +  P-i-8. (23)

Donc A = p '- ( -3 1.
C’est cette valeur de A qu’il faudra introduire dans la formule (18), ce qui 
donnera :

t =  to±  ~  I /  0 ’ +  S1i« - a7  (24)

De même, au moment où la lune est tout entière dans la pénombre, on a :
A =  P ' - 8 „

et, par suite, t =  t0± - i  J /  ip’ — Sj)* — A0*. (25)

Mais ces formules ne servent pas.
390. Remarque importante. — Dans le calcul des éclipses de lune, il faut 

tenir compte d’une circonstance dont nous avons parlé (n° 316). Les couches 
inférieures de l’atmosphère, dont la densité est la plus grande, agissent 
comme si le rayon de la terre était plus grand qu’il n’est en réalité ; et il 
faut, par suite, augmenter les demi-diamètres p et p' d’un soixantième de 
leur valeur, pour que le calcul soit d’accord avec l’observation. Ce sont ces 
valeurs ainsi modifiées qu’il faut porter dans les formules (7), (12), (14), (15), 
(16), (19', (20), (21), (22), (24) et (25), où se trouvent p et P’.

391. Exemple d’un calcul d’éclipse de lune. — Pour montrer la marche 
que l’on suit dans ces calculs, nous allons appliquer nos formules à l’éclipso 
des 13 et 14 novembre 1845. On trouve, dans l épliéméride :
Instant de l’opposition : 1845, novembre 14, à l1 4” 26*.7 du matin (temps 
moyen de Paris).

On calcule la latitude de la lune, à cet instant (n° 310), et l’on trouve :

X =  — 27'37",l = — 1657",!.

En comparant cette valeur avec les limites assignées (n°* 583 et 584), on 
reconnaît que l'éclipse est certaine, mais que t  éclipse totale est douteuse.

On prend alors, dans l’éphéméride, les données suivantes, relatives à l’in­
stant de i’opposition :
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p =  8",7 6 = 1 6 ' 12",3=972" ,3
P, =  55’39",6 =  3339",G 6, =  15’ iO",t =910".l.

On y trouve encore :

/*' =  — 17 J",0 )/»' — m —  17 36", 0.

Celaposé, on calcule d’abord I et M par les formules ( 10), et l’on trouve!

1 = — 5° 13' 13",4 M =  1714",7.

On détermine (3 par la formule (C), et on le corrige, comme nous l’avons 
dit. Ou a ainsi :

p =  237G",0 

correction 39",C

2e P corrigé = 2 4  la",6.

On calcule ensuite A0 par la formule (13) A0 =  — X cos I ,  et l’on trouve. :

3° A0 =  1G48",8 =  27'28",8.

Or, d’un autre côté, p — 8] =  1505",5 ; 
donc A0 est plus grand que p — Sj ; donc l’éclipse ne peut pas être totale.

Puisque l’éclipse n’est pas totale, on calcule sa plus grande phase ç0 par la 
formule (16), qui donne:

40 -  ^ 0 , 9  0 921274 1820^2 9,32127.

Pour avoir ç0 en doigts, on multiplierait cette fraction par 12, et l’on aurait :
ç0 =  11 doigts, 05.

On obtient ensuite l’instant de la plus grande phase par la formule (13); 
elle donne :

8° =  — 5" 40‘,8.
Ainsi la plus grande phase a lieu 5° 40*,8 avant l'opposition, c’est-à-dire 

le 14 novembre, à 0” 50" 39*.9.
Enfin on calcule le commencement et la fin de l’éclipse, à l’aide des for- 

truies (19) que l’on écrit ainsi:

* =  j f  ^ ^ 5  +  8, +  A0) (p+  81 — A0).
11 \ ient :
, , _  4974,5X1076,9, . 2888.2.
' = ' » T  ------- --------------- heures =--/0=Fyyyyyheures =  t0rp 1“ 39” 18*,5.

Par conséquent 6° t =  14 novembre 1845, O1* 58" 39*,9 rp l* 39" 19*, 5. 
Ainsi le commencement de l’éclipse a lieu le 13 nov., à l l k 19“ 20’,4 du soir,
et la fin................................................. le 14 nov„ à 2“ 37" 5S*,4 du matin.
Par suite, la durée de l'éclipse est 6 =  3h 18" 35*.



892. Remarque. — Le critérium que nous avons donné (n° 583), pour juger 
do l’existence de l’éclipse, exige que l’on calcule la latitude de la lune, à 
l’instant de l’opposition. Or on peut éviter ce calcul. En effet, soient X la lati­
tude de la lune à cet instant, D la distance du centre de l’ombre au nœud 
voisin (ou, ce qui est la même chose, la distance du soleil à l’autre nœud), 
et t l’inclinaison de l’orbite de la lune sur le plan de l’écliptique. Le trian­
gle rectangle £1. LG (fig. 166) donne, en ne tenant compte que des valeurs 
absolues :

tang X =  tang i  sin D, d’où sin D =  •° tang i
Or, pour que l’éclipse soit certaine, il suffit que X soit inférieure à une cer­
taine limite X' que nous avons assignée (n° 583), c’est-à-dire que l’on ait : 

tan0, Vsin D <  [ ^  : ; et, pour qu elle soit possible, il suffit que X soit supé­

rieure à une autre limite X", ou que l’on ait ; sin D >  tan-  - ■ Si l’on rem- . tang i
place i dans la première inégalité par une valeur supérieure 5° 17' 35", et 
dans la seconde par une valeur inférieure 5" 0' 1", on en conclut que:

1° L’éclipse est certaine, si, vers t  opposition, la distance du soleil au nœud 
Je plus voisin est inférieure à 9“ 31' ;

2° L’éclipse est impossible, si, au même instant, la distance du soleil au 
nœud est supérieure à 12° 3'.

Il suffit de jeter les yeux sur les tables pour reconnaître si, vers l’opposition, 
la distance du soleil à un nœud est plus petite ou plus grande qu’une quantité 
donnée.

Mais ce nouveau critérium ne peut guère servir que dans le cas où l’éclipse 
est impossible : car, si elle existe, ou même si elle est douteuse, il est né­
cessaire, pour les calculs ultérieurs, de déterminer la latitude X.

893. Des lieux de la terre  qui voient l’éclipse. — Comme la lune perd 
réellement sa lumière pendant l’éclipse, les différentes phases du phénomène 
sont absolument les mêmes pour tous les observateurs qui peuvent aperce­
voir l’astre, quelle que soit leur position. La parallaxe ne joue aucun rû’e 
ici ; les parallaxes qui entrent dans nos calculs n’y figurent, en effet, que 
comme expressions des distances des trois corps. Il n’en sera pas de même 
pour les éclipses du soleil.

Nous allons chercher quels sont les lieux de la terre qui verront le milieu 
de l’éclipse. L’instant de ce milieu a été déterminé (par la formule 13) en 
temps moyen de Paris, et compté comme temps civil. En y ajoutant l’équa­
tion du temps, on a le temps vrai de Paris T0 pour le milieu de l’éclipse. Si 
l’on convertit ce temps en degrés, on obtient l’angle horaire du soleil pour 
Paris (n° 28). Par conséquent, cet angle exprime la longitude géographique 
(par rappoit à Paris) des points qui ont, à cet instant, le soleil dans leur mé­
ridien, longitude occidentale si T0 est positif, orientale si T0 est négatif. Cette 
longitude est, en particulier, celle du point qui a, à cet instant, le centre du 
soleil à son nadir et le centre de l’ombre à son zénith.

ADDITIONS; 4 07
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On peut aussi trouver la latitude géographique de ce point. Puisque l’om­
bre est au zénith, la latitude du point est mesurée par la déclinaison ide 
l’ombre, c’est-à-dire par la déclinaison du soleil changée do signe, pour l’in­
stant en question.

On connaît ainsi la position géographique du point qui voit le milieu de 
l’éclipse à son zénith. Tout l’hémisphère dont ce point est le pôle verra le 
milieu de l’éclipse.

On déterminera de même l’hémisphère qui verra le commencement ou la 
fin de l’éclipse.

NOTE XXVI (n° 314, p . 22o).

tn f ln e n c e  d e  l ’a tm o s p h è r e  s u r  le s  é c l ip s e s  d e  In n é ,

894. Calcul de la  longueur du cône d’ombre de la te rre , en te ­
nan t compte de la réfraction atmosphérique. — Soit SD (fig. 171) un rayon

incident, venu d’un point S 
du soleil, et entrant dans 
l’atmosphère en D ; ce rayon 
s’infléchit (note XI), et va 
raser la terre en B; puis, à 
partir de ce point, il décrit 
une courbe BD' symétrique 
de BD par rapport à TB, sort 
de l’atmosphère en D', et 
continue sa route en ligne 
droite suivant D’C. Or cette 
dernière direction fait avec 
la direction SD un angle SIS’, 

double de celui qu’on nomme la réfraction horizontale, dont la valeur est 
33' 48",9, et que nous désignerons par p. Le point S parait donc, à l’observa­
teur placé en C sur la ligne des centres du soleil et de la terre, dans la direc­
tion CS', qui fait avec la première SD l’aDgle 2p, et qui est sensiblement tan­
gente à la surface de la terre.

Cela posé, revenons à la figure 105, p. 224, dans laquelle ABO sera le 
rayon incident venu du bord supérieur du soleil, et BC le rayon réfracté; le 
triangle CTB donne

CT = TB . 
sin BCT ’

or l’angle BCT est la somme des angles OBC =  2p et COB =  S — P ; donc la
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longueur nouvelle du cône d’ombre est :

x  = ----- —̂ !---------- (i)
sm  ;o - |- 2 p — Pj

Ainsi tout se passe comme si le demi-diamètre apparent du soleil était 8 +  ?p, 
et que la réfraction n’existât pas. Cette formule fournit le point C de l’axe, 
où l’on commence à voir le point A par réfraction.

Pour avoir le point C', d’où l’on voit par réfraction un point A'du disque, 
il suffit évidemment de remplacer dans la formule (1) S par la distance A'S. 
Si l’on veut trouver le point d’où le centre S devient visible par réfraction, 
on posera 8 =  0; et si l’on veut obtenir les points de l’axe de plus en plus 
éloignés, d’où l’on peut voir les points situés au-dessous du centre, et en 
particulier le point A", on donnera à 8 les valeurs qui correspondent aux dis­
tances de ces points au centre, en les affectant du signe —.

898. Applications. — Rien n’est plus facile que d’exécuter le calcul de la 
formule (l), à l’aide des logarithmes, en remplaçant 8, p et P par leurs va 
leurs moyennes. On trouve ainsi :

Pour le bord supérieur A a; =  41,185 r;
Pour le centre S, x  =  50,008 r ;
Pour le bord inférieur A", x  =  G5,G29 r.

On pourrait aussi calculer la portion du diamètre du disque du soleil qui 
serait visible de la lune, par réfraction, au moment d’une éclipse centrale : 
il suffirait de poser dans la formule (1),3:=  C0 r, et de résoudre, par rapport 
à 8, l’équation

sin (S +  2 p - P ) = ^ ;

et l’on trouverait :
8 =  — 10' 11".

Ainsi, un observateur placé dans la lune, au moment d’une éclipse centrale, 
verrait par rétraction, non-seulement le centre du soleil, mais encoro les 
deux tiers du rayon SA".
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NOTE XXVII (n» 317 et suiv., p. 220).

Doa éclipses de soleil.

S9G. Formule préliminaire.—  C o n s id é r o n s  e n c o r e  l e  c ô n e  c i r c o n s c r i t  a u  

s o l e i l  e t  à  la  t e r r e ( f i g .  1 0 3 , p .  2 2 1 ) . D é c r iv o n s  d u  c e n t r e  T  u n e  s p h è r e  d e  r a y o n  

T L  ; c e t t e  s p h è r e  c o u p e r a  l e  cône lu m in eu x  s u i v a n t  u n  c e r c l e ,  e t  l e  p l a n  d e  la  

f i g u r e  s u i v a n t  l ’a r c  H 'G '.  C e t  a r c ,  o u  l ’a n g l e  H 'T G ' s e r a  l e  d e m i - d i a m è t r e  

a p p a r e n t  d e  l a  s e c t io n  d u  c ô n e  l u m i n e u x  à  l a  d i s t a n c e  d e  la  l u n e ;  n o u s  le  
d é s i g n e r o n s  p a r  p .

O n  v o i t  a i s é m e n t  q u e  p  e s t  l a  s o m m e  d e s  a n g l e s  T O B  e t  T l l ’B ; d ’a i l l e u r s  

T O B  e s t  l e  d e m i - a n g l e  a  a u  s o m m e t  d u  c ô n e  (n °  3 0 6 ) , T H 'B  e s t  l e  p a r a l l a x e  

P 4 d e  l a  l u n e ;  d o n c  :

p  =  5  +  P ,  -  P .  (1 )

E n  r e m p l a ç a n t  8 , P ,  P ]  p a r  l e u r s  v a l e u r s  m a x im u m  o u  m i n i m u m ,  o n  t r o u v e  

m a x . d e  p  =  1° I V  3 6 " ,  5 4  m in . de  p  =  1 » 9 '  2 9 " ,  2 5 .

L e  m in im u m  d e  p  e s t  p r e s q u e  le  d o u b le  d u  m i n i m u m  d u  d e m i - d i a m è t r e  d o  

l a  s e c t io n  d u  c ô n e  d ’o m b r e  p u r e .  D o n c  les éclipses de so le il d o iven t ê tre  beau­
coup p lu s fréquen tes que les éclipses de lune.

S 9 7 . Condition nécessaire et suffisante pour qu’il y ait éclipse à un 
moment donné. —  P o u r  q u ’à  u n  i n s t a n t  d o n n é  i l  y  a i t  é c l i p s e  d e  s o le i l  p o u r

q u e l q u e  l i e u  d e  la  t e r r e ,  i l  

f a u t  e t  i l  s u f f i t  q u ’à  c e t  i n s ­

t a n t  l a  l u n e  s o i t  e n  p a r t i e  o u  

e n  t o t a l i t é  d a n s  l e  c ô n e  l u ­

m i n e u x .  P o u r  c e l a ,  i l  es t né­
cessaire e t su ffis a n t que la  
distance a n g u la ire  A  d u  cen­
tre  de la  lune au centre de  la  
section du  cône lu m in e u x  
so it p lu s  petite  que la som m e  
des dem i-d iam ètres  a p p a ­

r e n t s  p  +  ô „  c ’e s t - à - d i r e  q u e  

l ’o n  a i t  :

A < p + 8 j ,
o u

r î S - 1 7 ! :  A  < 8 4 - 6 i  + P ,  — P .  (2 )

D é c r iv o n s  d u  c e n t r e  T  ( f ig .  1 7 2 ) u n e  s p h è r e  a y a n t  p o u r  r a y o n  la  d i s t a n c e  

T S  d e  l a  t e r r e  a u  s o l e i l .  S o i e n t ,  s u r  c e t t e  s p h è r e ,  E E ' l ’o r b i t e  a p p a r e n t e  d u
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soleil, et VV' la trace du plan de l’orbite LL' de la lune. Soient, au moment 
de la conjonction, S et L les positions dos centres du soleil et de la lune, situés 
dans le même cercle de latitude PGS; leur distance estalors SG, latitude delà 
lune. Soient, à un autre moment, S' et L'les deux centres; le point L', vu du 
point T, paraît projeté en G', et la distance A est mesurée par l’arc S'G'.

Comme le maximum du second membre de l’inégalité (2) est 1° 34' 23", 54, 
et que le minimum est 1°24' 12", 25, on peut considérer comme plane la por­
tion de ta sphère céleste où s’exécutent les mouvements des deux corps pen­
dant la durée de l’éclipse. D’ailleurs, si l’on mène le cercle de latitude PG'D, 
chacun des arcs S'D et G'D est moindre que A ; donc l’éclipse ne peut avoir 
lieu que près de la conjonction et que si la lune est dans le voisinage de l’nn 
de ses nœuds.

Cela posé, si l’on veut borner l’étude des éclipses de soleil à ce qu’on 
nomme l’éclipse générale, c’est-à-dire aux circonstances de l’entrée de la lune 
dans le cône lumineux, de sa demeure dans ce cône et de sa sortie, sans se 
préoecuper des lieux qui verront l’éclipse, le problème sera identiquement le 
même que celui des éclipses de lune.

S98. Distance angulaire des centres de la lune et du soleil. — Soit t 
un temps très-court, compté à partir de la conjonction; soient, au moment 
de la conjonction, X la latitude de la lune, m le mouvement horaire du soleil 
en longitude, m’ et «'ceux de la lune en longitude et en latitude. Soient S’et 
G' les positions apparentes du soleil et de la lune à l’époque t. Menons l’arc 
GK parallèle à l’écliptique. On aura

S'G' =  A, SS' =  mt, SD =  m’t, S’D =  (m' — m) f, G'D =  ). +  n’t. 
Dans le triangle rectiligne et rectangle G’S'D, on a donc :

A2 =  (m ' — m)2 t2 +  (X +  r it) \  (3)

formule dans laquelle tout est connu, puisque X se calcule comme on l’a vu 
(n° 310.)

On transforme cette formule, comme la formule (8) de la note XXV, eu 
posant : ri — M sin I, né — m =  M cos I ;
e t l’on conclut de même que, pour qu’il y ait éclipse, il faut et il suffit que 
i’on ait, à l’instant de la conjonction,

± k  < S +  S | - P P |  — P 
cos I w

1° 3V 24"Or, le 2e membre de cette inégalité est compris entre -----------=  1°34'56"
cos 0“

1° 24 ' 12"et —  ■■ ■ =  1« 24' 31". Donc :cos 5°
1. Si, à l’instant de la conjonction, la latitude de la lune est, en valeur 

absolue, inférieure à X’ =  1° 24' 31", il y  a nécessairement éclipse de soleil 
pour quelque point de la terre.

2. Si, à cette instant, la latitude de la lune est supérieure à X" =  1° 34' 5G', 
il n’y a pas d’éclipse.
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3° Si, à cet instant, la latitude de la lune est comprise entre 1° 24'31" et 
1° 34' 56", l’éclipse est douteuse ; et il faut alors calculer la formule (i), qui 
donne la condition nécessaire et suffisante.

ED9. Commencement, fin et durée de l’éclipso. — On reconnaît, comme 
au n° 584, que le minimum de la distance A et l’époque où elle a lieu sont 
donnés par les formules

A0 =  ± X  cos I,
), si n 1 '• (5)

,o= sr ’ j
et que les instants du commencement et do la fin de l'éclipsa générale sout 
fournis ;n° 584) par la formule

1 =  '» ±  "KT ^  (P - t-S i) J - A 0S- (6)

Par suite la durée totale de l’éclipse est :

Le maximum do cette durée s’obtiendra, en posant d’abord A0 =  0, puis on 
prenant pour (5 +  8l sa valeur maximum 1° 34' 24" ou 5664", et pour 51 le

moyen mouvement synodique horaire de la lune —— — • On trouve ainsi :

5604 X  ^9 530 =  — ------ heures, ou 6h 12“ environ. Une éclipse de soleil ne peut
2 lUUO ’ e  r

donc guère durer plus de 6 heures.
600. Remarque. — Les calculs qui précèdent ne nous apprennent rien sur 

les circonstances du phénomène qu’on peut observer des différents points de 
la terre. Or, ces circonstances sont très-différentes d’un lieu 5 un autre. 
Quelquefois plusieurs de ces lieux peuvent voir la lune couvrir complètement 
le soleil, tandis que pour d'autres il n’y aura aucune éclipse. Ceci montre 
combien la parallaxe peut influer sur le phénomène.

601. Éclipse centrale. — Considérons le cas particulier d’une éclipse cen­
trale pour un observateur placé au centre de la terre. On a trouvé (n° 321) 
pour la longueur du cône d’ombre que la lune projette derrière elle s

x  =  0,00244 SL.

r  tOr, dans le cas actuel, SL =  ST — LT =  —-r. — ——:——  ;’ P sm 1" Pj sin 1" ’

, 0,60244 r (  1 1 \donc (8)

Pour qu’il y ait éclipse totale pour quelque point do la surface de la terre, 
quand il y a éclipse centrale pour le centre, c’est-à-dire quand A0 =  0, il faut 
et il suffit que Tou ait t
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___, O.OOS44 r  /  I 1 \  r
sin 1" VP I V  l*i au  1

_ ^  1,00544 P
° U P‘ > W Î W '

O: , le maximum du 5e membre correspond au maximum do P, qui est 
P =  8,75, et ce maximum est 58' 56". Donc l'éclipse tolule es! certaine si 
P4 est > 5 8 ' 50".

602. Éclipse centrale totale. — L’angle au sommet du cône d’ombre lu­
naire (fig. 106, p. 227), que nous désignons par 2a, est donné par la formule

Sin “ =  ï ï  ' <l0)

Si la lune est périgée et le soleil apogée, LI =  59,35 r  (n° 321.’ ; donc

Sma =  - M ^ 5 ’ d0Ù fc~ tP ,te sin 1" = 1 S 4 3 ’U

Dans ces conditions l’éclipse centrale est nécessairement totale pour la ré­
gion de la terre située sur l’axe SL; et l’on peut calculer l’élendac de la ca­
lotte sphérique interceptée par le cône d’ombre pure sur la surface terrestre. 
En effet, concevons le cône qui aurait.pour sommet le centre de la terre, et 
pour base cette calotte; le demi-angle s au sommet de ce cône et l’angle a 
peuvent être considérés comme les demi-diamètres apparents d’un même 
objet, vu du centre T et du point I ; comme ils sont très-petits, ils sont en 
raison inverse des distances ; on a donc :

i  =  i 5 ± ü  =  =  59,35 -  55,95 + 1  =  4,4.
u r  r

Ainsi fc =  4,4a =  4171",64= 1° 9' 3l",64.

Or la hauteur de la calotte est r  (1 — cos e) ou 2.' sin * i  ; donc l’aire do la 

calotte est 4rc r* sin51 > et sou rapport à la surface de la terre est sini 2 ~ , ou

^  sin 1"^ • On trouve, en faisant le calcul, que le rapport est 0,00010226.

Ainsi la zone terrestre qui voit Véclipse totale, à un moment donné, n’est 
guère que la dix-millième partie de la surface de la terre.

603. — Étudions maintenant la marche de l’axe du cône d’ombre, à la sur­
face de la terre, dans le cas d’une éclipse centrale. Nous pourrons, dans ce 
cas, faire abstraction de l’inclinaison de l’orbito de la lune pendant la durée 
de l’éclipse.

604. Marche de l'axe du cône d'ombre sur la terre  immobile. — Nous 
ferons d’abord abstraction de la rotation de la terre sur elle-même. Soit T 
(fig. 173) la section do la terre p_r le plan de l’éoliptiue; soient SS' et LL' les



414 ADDITIONS.

orbites du soleil et de la lune; soient encore S et L les positions des centres des 
deux astres, au moment do la conjonction, et S' et L' leurs positions t heu­
res après cet instant. L’axe du cône d’ombre est d’abord dirigé suivant SLT, 
et rencontre la terre en A. Après le temps t, cet axe a pris la direction S'L'A'.

Joignons S'T et L'T. L’angle TL'A', extérieur au triangle S'L'T, est la somme 
des angles L'S'T et L'TS'; or le premier p est une fraction de la parallaxe 
P du soleil ; quant à l’autre, on a L'TS' =  L'TL — S'TS ; il est donc le mou­
vement synodique de la lune pendant le temps t, ou M<, en désignant par M 
le mouvement relatif horaire de la lundi Ainsi

TL'A' =  p +  ML (11)

Au bout d’un certain temps, Taxe du cône d’ombre devient tangent à la 
terre; il prend alors la position S"L"A". A cet instant, p =  P, T L 'A '=P i 
parallaxe horizontale de la lune. L’équation (11) devient donc

P1 =  P +  M(, d’où t =  • (12)

54000"Si l’on remplace Pj — P par sa valeur maximum 3679 ,̂ et M par ———

(note XXV), on trouve t — 2 h. Ainsi il ne s’écoulera pas plus de deux heures 
entre l’instant de la conjonction et celui où l’axe du cône deviendra tangent 
à la terre ; cet axe n’emploiera donc pas plus de quatre heures à balayer la 
surface du globe.

608. Vitesse du centre de l’ombre. — On peut aussi calculer l’arc AA’ 
parcouru par le centre de l’ombre pendant le temps t. En effet, le trian­
gle L'TA' nous donne :

sin A' __ d_i sin (TH- L') _rf,
sin L' r ’ sin L' r ’ (13)

formule dans laquelle, en négligeant p, on a L' =  Mf, et qui fera connaître 
l’angle LTA'. En ajoutant à cet angle l’angle L'TL décrit par la lune, on 
aura l’angle ATA', ou l’arc AA'.
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D ’a p r è s  l a  f o r m u le  (1 3 ) , s in  ( T + L ' )  v a u t  à  p e u  p r è s  6 0  fo is  s in  I . ' ; d o n c  

l ’a n g le  T  +  L ' e s t  b e a u c o u p  p lu s  g r a n d  q u e  l ’a n g l e  L ' ;  i l  e n  e s t  d e  m ê m e  d o  

l ’a n g l e  T  s e u l ,  v t  p a r  s u i t e  d e  l ’a n g l e  A T A '.  A in s i  l e  m o u v e m e n t  d e  l ’o m b r e  

e s t  b e a u c o u p  p lu s  r a p i d e  q u e  le  m o u v e m e n t  s y n o d iq u e  d e  l a  l u n e ,  e t ,  p a r  

s u i t e ,  l ’o m b r e  d o i t  s e  d é p l a c e r  r a p i d e m e n t  d e  l ’o u e s t  à  l ’e s t  s u r  le  g lo b e .

D a n s  le  v o is in a g e  d e  la  c o n jo n c t io n ,  t a n t  q u e  T  e t  L ' r e s t e n t  t r è s - p e t i t s ,  o n  

p e u t  s u b s t i t u e r  c e s  a n g l e s  à  l e u r s  s i n u s ,  d a n s  l a  f o r m u le  (1 3 ) ,  e t  T o n  a  :

=  —  ? d ’o ù  T  =  — — -  L ',  o u  T  =  5 9  L 'e n v i r o n .L  r  r

A in s i ,  q u a n d  l a  lu n e  p a r c o u r t  u n  a r c  d e  1 ' d a n s  s o n  m o u v e m e n t  s y n o d iq u e ,  

l ’o m b r e  p a r c o u r t  u n  a r c  d e  5 9 ',  a u g m e n té  d u  m o u v e m e n t  s i d é r a l  d e  la  

l u n e .

6 0 6 .  Influence du mouvement de rotation de l a  terre. —  D e s t i t u o n s  

m a i n t e n a n t  à  l a  t e r r e  s o n  m o u v e m e n t  d e  r o t a t i o n  s u r  e l le - m ê m e , q u i  a  l i e u  

d a n s  le  s e n s  de la f lè c h e .  S u p p o s o n s ,  p o u r  p lu s  de s im p l ic i t é ,  l ’é q u a t e u r  

c o n fo n d u  a v e c  l ’é c l i p t i q u e  ; l ’o b s e r v a t e u r  p la c é  e n  A  s e  d é p la c e  d a n s  le  m ê m e  

s e n s  q u e  l ’o m b r e .  L e  m o u v e m e n t  d e  r o t a t i o n  a d o n c  p o u r  e f f e t  d e  p r o lo n g e r  

p o u r  l u i  l a  d u r é e  d e  l ’é c l ip s e  t o t a l e  ; e t  T o n  p e u t  c a l c u l e r ,  d a n s  c e s  c o n d i t io n s ,  

le  m a x im u m  d e  c e t t e  d u r é e .  E n  e f fe t :

L e  m o u v e m e n t  s y u o ü iq u e  d e  l a  l u n e  e n  1“ ,  o u  l ’a n -

54000"

' teWA' “ * f e x « 3 * • • • • ’ » • • =  30" ’43

L ’a n g le  L 'T A '=  5 9  T L 'A '.  . . * ........................................ = 2 9 ' 5 8 " , 32

5 4 0 0 C "
L e  m o u v e m e n t  s i d é r a l  d e  l a  l u n e  e n  1 “ =  ■ ■■■? =  3 2 " ,9  i

Z I yOZ OU

L ’a n g le  A T A ', s o m m e  d e  c e s  d e u x  a n g le s ................................= 3 9 '  3 1 " ,2  j

T e l  e s t  l e  m o u v e m e n t  a n g u l a i r e  d e  l ’o m b r e ,  v u  d u  

c e n t r e  d e  l a  t e r r e .

L e  m o u v e m e n t  d u  p o i n t  A , e n  1“ . . . . .  .  . =  15 '

D o n c  l e  m o u v e m e n t  r e l a t i f  d e  l ’o m b r e  s u r  le  p o i n t  A  =  1 5 '3 1 " ,V 6 .

D ’u n  a u t r e  c ô t é ,  l e  d i a m è t r e  d e  l ’o m b r e ,  v u  d u  c e n t r e  d e  l a  t e r r e ,  o u  

2 e  =  2» 1 9 ' 3 " , 2 8 ;  d o n c  a u t a n t  d e  fo is  1 5 ' 3 1 " ,2 6  s e r o n t  c o n t e n u e s  d a n s  

2 °  1 9 '  3 " , 2 8 , a u t a n t  l ’o m b r e  e m p lo i e r a  d e  m i n u t e s  à  p a s s e r  d e  l ’o c c id e n t  i  

l ’o r ie n t  d u  p o in t  A .  L e  c a lc u l  d o n n e  8  à  9  m i n u t e s ;  c e  n o m b r e  e s t  t r o p  f o r t ,  

A c a u s e  d e s  s im p l i f ic a t i o n s  q u e  n o u s  n o u s  s o m m e s  p e r m is e s .  E n  f a i t ,  

u n e  é c l ip s e  t o t a l e  d e  s o le i l ,  p o u r  u n  p o in t  d o n n é ,  n e  p e u t  d u r e r  p lu s  d e  5  m i ­

n u te s .

607. Marche de l’ombre et de la pénombre. —  On c o m p r e n d  f a c i le ­

m e n t  m a i n t e n a n t  q u e l le  e s t  la m a r c h e  d e  l ’o m b r e  s u r  le  d i s q u e  d o  l a  t e r r e .



D’abord la pénombre est tangente à la surface en un point A (fig. 174), qui
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voit ainsi commencer l’éclipse, au lever du soleil. Ce point se déplace dans 
le sens de la flèche, mais l’ombre va plus vite que lui dans le même sens; par 
suite, l’éclipse augmente, et bientôt elle devient totale pour lui (fig. 178).

En même temps un autre lieu B voit le soleil se lever éclipsé partiellement. 
Le mouvement continuant, d’autres points C (fig. 179) ne voient le soleil se

lever qu’après l’éclipse; le point A la voit finir,ainsi que le point B; l’ombre 
envahit d'autres régions plus orientales M ; et enfin il arrive un moment où,

Fig. 180.

la pénombre devenant tangente à la terre au point N (fig. 180), ce point voit 
l’éclipse finir en même temps que le jour.
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NOTE XXVIII (n° 327, p. 232).

Rétrogradation des nœuds de la lune; retour des 

éclipses.

G08. Durée de la rétrogradation des nœuds de la lune. — Lorsqu’on 
mesure, par les procédés que nous avons donnés (n. 259), la longitude du 
nœud ascendant de la lune, on remarque qu’elle diminue à mesure que les 
révolutions lunaires s’accomplissent, c’est-à-dire que le nœud rétrograde sur 
l’écliptique. Ce mouvement, complètement analogue à celui des points équi­
noxiaux, s’explique de la même manière, par les attractions inégales que le 
soleil exerce sur la lune et sur la terre, dans leurs diverses positions rela­
tives. Mais il est beaucoup plus rapide, et d’ailleurs sensiblement uniforme ; 
tandis que la rétrogradation des points équinoxiaux accomplit sa révolution 
en 2GOOO ans, celle des nœuds ne dure que 18«°» 218, 2l>>, ou G793i,25. Ce 
mouvement se ralentit de siècle en siècle. De plus, par une autre analogie, 
l’inclinaison de l'orbite ne change pas dans cette rotation, de même quo 
l’obliquité de l’écliptique reste invariable (n° 2C0).

cou. Variation de l’inclinaison de l'orbite lunaire sur l'équateur. —
11 résulte de là que l’axe de l’orbite de la lune décrit, en sens rétrograde, au­
tour d’une parallèle à Taxe de l’écliptique, un cène circulaire droit dont le 
demi-angle au sommet est de 5° 8’ 48", cil entraînant avec lui le plan de l’orbite 
auquel il reste perpendiculaire. C’est ce mouvement qui produit la varia­
tion de l’inclinaison do ce plan sur l’équateur. En effet, soient EE’ et CC' 
(fig. 1811 les traces des plans de l’équateur et de l’écliptique sur un plan 
perpendiculaire à la ligne des équinoxes. Supposons, pour plus de simplicité, 
que cette ligne reste fixe pendant une révolution des nœuds. 11 arrivera un 
moment où la ligne des nœuds coiucidera avec la ligue des équinoxes; alors 
la trace du plan de i’orbite de la lune sur le plan de la figure sera une droite 
VTV', faisant avec CC' un angle de 5» 8' 48". Puis, au bout de 9 ans 109 jours 
tmoitié de 18 ans 218 jours),
la ligne des nœuds coïnci­
dant de nouveau avec la li­
gne des équinoxes, et l’in­
clinaison sur l’écliptique 
restant constante, la trace 
de l’orbite sera une autre 
droite V,TV'i, faisant en­
core avec CC' le même an­
gle 5° 8’ 48". On voit d’après cela que, dans la première position, l’incli­
naison de l’orbite sur l’équateur EE' est la somme ETC +  CTV ou 23° 27' 16" 

cosa.c. 27
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+  5° 8' 48" =  28® 36' 4" ; et qué, dans la seconde, elle est leur différence 
E'TC' — C’TVj, ou 23” 27' 16"— 5“ 8' 48" =  18» 18' 28". C’est entre ces deux 
limites que varie l’inclinaison sur l’équateur. On voit, en outre, que le plan 
de l’orbite lunaire est tantôt dans l’angle aigu de l’équateur avec l’écliptique, 
et tantôt en dehors de cet angle.

CIO. Révolution synodique du nœud. — Si, pour être plus clair, on 
admet les mouvements apparents, et qu’on fasse tourner à la fois le soleil S et

la lune L autour de la terre T 
dans leurs orbites respectives 
(fig. 182), avec leurs vitesses 
angulaires propres, et si l’on 
choisit pour origine le moment 
o i le soleil part du nœud ascen­
dant N, il est évident que, 
lorsque cet astre reviendra, il 
trouvera le nœud en N' plus 
tôt qu’il ne l’aurait rencontré 
si ce dernier n’avait pas rétro­
gradé. On appelle révolution 
synodique du nœud le temps x  
que le soleil emploie ainsi à re­
venir au nœud. Il est facile de 
calculer ce temps. Car, dési­

gnons par V et V' les vitesses, en un Jour, du soleil et du nœud ; les espaces 
parcourus par eux, en x jours, seront \ x  et X'x : on a donc évidemment,

d’où

Or

Yx-f- X'x =  360”,

360”
Y +  V' ‘

3 6 0 ”V = ----—------- 0» 5b' 8", 10,
3 i i5 ,2 5 6 3 8  ’ ’

V- « S 5 = 0° 3' 10"'78-
On tire de là s

révolution synodique du nœud =  346i,G196.
611. Retour des éclipses. — Pour qu’une éclipse de lune ou de soleil ait 

lieu, il faut, comme nous l’avons vu, qu’au moment de l’opposition ou de la 
conjonction, la lune se trouve dans le voisinage de l’un de ses nœuds ; il faut, 
en d’autre» termes, que la ligne des nœuds se confonde sensiblement avec 
les droites menées de la terre au centre du soleil et de la lune. Si ces condi­
tions sont remplies à un moment donné, et qu’eu conséquence une éclipse 
se produise, il est évident que la même éclipse se reproduira avec les mêmes 
phases et la même durée, lorsque les mouvements du soleil, de la lune et du



nœud ramèneront, dans la suite des temps, ces trois mobiles dans la môme 
position relative.

CI2. Calcul de la  période des éclipses. — Or, après une révolution 
synodique du nœud, le nœud se retrouve dans la même position relativement 
au soleil ; et, après une révolution synodique de la lune, cet astre se retrouve 
aussi dans la même position par rapport au soleil. Si donc la première de ces 
révolutions était un multiple exact de la seconde ; si, par exemple, une révo­
lution synodique du nœud valait 12 révolutions synodiques de la lune, il est 
clair qu’après un temps égal à 34Gj,6196, les trois mobiles se retrouveraient 
dans la même position relative : cette durée serait une période, après la­
quelle les éclipses se reproduiraient dans le même ordre. Mais le rapport des

n i  /> /•  i Q n

deux révolutions n’est pas aussi simple : car 11— :—— =  11,7376. Si nousv 29,63069 ’
formons les multiples successifs de ce rapport, nous trouverons que le 19e 
multiple vaut 223,016. Par conséquent, eu négligeant la petite fraction 
0,015, on voit que 19 révolutions synodiques du nœud valent très-approxi- 
mativement 223 lunaisons; et, par suite, après une période de temps égale 6 
223 lunaisons, les trois mobiles se retrouveront très-sensiblement dans la 
même position relative. Cette période comprend 19 fois 346i,6!96, ou 223 
fois 29i,530688 ; elle vaut 6585),50, ou 18 ans 11 jours environ, Si donc 
on a noté toutes les éclipses de lune ou de soleil, pendant une période de 
18 ans 11 jours, on pourra prédire les éclipses qui arriveront dans la période 
suivante; car elles se reproduiront, à peu près les mêmes, et à 18 ans 11 jours 
de distance. En corrigeant les prévisions ainsi obtenues, par l’observation dos 
nouvelles éclipses, quand elles se manifesteront, on prédira de même les 
éclipses de la troisième période, et ainsi de suite.

C’est ainsi que les Chaldéens, qui connaissaient cette période sous le nom de 
saros, et qui l’avaient déterminée par une longue suite d’observations, étaient 
parvenus à prévoir le retour des éclipses. On peut d’ailleurs trouver d’autres 
périodes plus exactes ; ainsi 549 révolutions du nœud valent 5 très-pou 
près 6444 lunaisons. Mais on ne se sert plus de ces périodes, aujourd’hui que 
les tables astronomiques sont construites avec une admirable précision.

r  1
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L I V R E  V. — L E S  P L A N È T E S ,

---------  'I

NOTE XXIX (n« 337, p. 238).

Détermination du mouvement de* planètes,

013. Marche à suivre. — Pour démontrer que les planètes tournent au­
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tour du soleil, nous suivrons la marche que nous avons plusieurs fois indiquée 
dans ces leçons. Nous admettrons comme vraie la loi du mouvement des pla­
nètes autour du soleil ; nous calculerons, dans cette hypothèse, toutes les 
circonstances de ce mouvement, et nous comparerons les résultats du calcul 
avec ceux de l’observation. Si nos conséquences théoriques se trouvent toutes 
vérifiées ainsi par l’expérience, nous en conclurons que notre hypothèse est 
fondée en raison, et que le soleil est réellement le centre des mouvements 
observés.

614. Détermination de la ligne des nœuds. — Et d’abord, si chaque 
planète se meut dans un plan qui contient le centre du soleil, elle doit percer 
le plan de l’écliptique en deux points diamétralement opposés par rapport à

cet astre, et l’inclinaison des deux 
plans doit être constaute. Vérifions 
ces deux conséquences.

Prenons le plan de l’écliptique 
pour plan de la figure : soient (fig. 
183) T le centre de la terre, S celui 
du soleil, et P la position d’une pla­
nète, au moment où elle traverse l’é­
cliptique. Soit, en outre, EE', la ligne 
des équinoxes : joignons TS, TP, SP, 

et prolongeons SP jusqu’à la rencontre de EE' en N. Posons, à cet instant, 
STE =  t, longitude du soleil ; PTE *= V, longitude de la planète ; PNE =  
angle que la ligne SP fait avec EE'; soient d’ailleurs, 'IS =  d, S P = p . Le 
triangle PST donne

S P  sin S T P  p sin (/' — l)
ST ~  sin SPT ’ 0u d ~  sin (n — I') ' {I'

Or, l’instant où la planète traverse l’écliptique, et sa longitude l ' s’obtien­
nent par de simples proportions, comme on détermine l’équinoxe et la posi­
tion des points équinoxiaux (n° 125) ; car on a le tableau des longitudes et 
des latitudes de l’astre, déduites par le calcul (note 1) du tableau de ses as­
censions droites et de ses déclinaisons observées. On connaît d’ailleurs par 
les tables la longitude l du soleil et sa distance d à la terre à ce moment. La 
formule (i) fournit donc une relation entre p et n. A une autre époque, où
la planète traverse encore le plan de l’écliptique, /, d ont des valeurs dif­
férentes que l’on mesure de la même manière : ccs valeurs fournissent une 
nouvelle relation entre p et n, et ces deux relations suffisent pour déterminer 
ces deux éléments. Or, on peut, à chaque passage de la planète à travers 
l’écliptique, former une équation analogue; et l’on trouve que toutes ces 
équations sont sensiblement vérifiées par les mêmes valeurs de n et de p. If 
faut en conclure que la distance p de la planète au soleil, lorsqu’elle se trouve 
dans l’écliptique, est à peu prés constante ; et que la ligne SP fait toujours 
sensiblement le même angle avec la ligue des équinoxes; et comme cette de,--
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nière se meut parallèlement à elle-même (n° 223), on voit que la ligne SP 
reste fixe dans le plan de l’écliptique.

Le point où une planète passe de l'hémisphère austral dans l’hémisphère 
boréal se nomme le nœud ascendant de l’astre ; le point où elle passe de l’hé­
misphère boréal dans l’hémisphère austral est le nœud descendant. La ligne 
SP, qui contient les deux nœuds, s’appelle la ligne des nœuds. On voit que, 
conformément à nos prévisions, la ligne des noeuds reste immobile, et passe 
par le centre du soleil. L’angle n se nomme la longitude du nœud.

61S. Détermination de l’obliquité de l'orbite. — D’autre part, conce­
vons un plan mené par la ligne des nœuds et par le lieu qu’occupe la planète 
à une époque quelconque de son mouvement, et mesurons l’inclinaison de ce 
plan sur l’écliptique. Pour cela, attendons le moment où la longitude du so­
leil est égale h la longitude n du nœud ; et soient alors (fig. 184) T la terre, S le 
soleil, et EE' la ligne des équinoxes ; EE'S est le plan de l’écliptique ; l’angle 
STE =  n est la longitude du 
soleil, et ST est la ligne des 
nœuds. Soient, en outre, P la 
position de la planète, et p 
sa projection sur le plan de 
l’écliptique; PST est le plan 
qui contient alors la planète 
et la ligne des nœuds, pTE 
=  l est sa longitude, PTp =
\  est sa latitude. Or, le triè- 
dre TSPp détermine, sur la sphère dont T est le centre, un triangle sphé­
rique S'P'p', rectangle en p', dans lequel le côté P’p' =  )., S'p' =  n —/, et 
l’angle S' =  i est l’inclinaison cherchée du plan PST sur le plan de l’éclip­
tique. Ce triangle donne:

tang S' = tang P'p’ 
si u S'p' tang i = tang X 

sin (n — t) (2)

Chaque fois que le soleil coïncidera avec le nœud de la planète, la longitude l 
et la latitude >, de celle-ci auront des valeurs différentes, et la formule (2) 
fournira une valeur de i. On trouve que cette valeur de i est constante. 
Ainsi, le plan, qui passe par la ligne des nœuds et par une position quelcon­
que de la planète, fait constamment le même angle avec le plan de l’éclip­
tique. Donc la planète se meut dans ce plan ; ce qui confirme encore nos pré­
visions.

etc. Ces calculs nous prouvent donc que chaque planète a une orbite 
plane, dont le plan passe par le soleil, et dont l’inclinaison sur le plan de 
l’écliptique ne varie pas. Nous avons à étudier maintenant le mouvement de 
l’astre sur son orbite. Pour cela, nous allons calculer le rayon vecteur mené 
du soleil à la planète à un instant donué, et l’angle que ce rayon fait avec 
une ligne fixe prise dans le plan de l’orbite; nous choisirons pour ligne fixe 
la ligne des nœuds, maintenant déterminée.
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6 1 7 .  C a l c u l  d e  l ’a n g l e  d u  r a y o n  v e c t e u r  a v e c  l a  l i g n e  d e s  n œ u d s .  —  

S o ie n t  (fig . 1 8 5 ) T ,  S ,  P ,  le s  p o s i t i o n s  d e  l a  t e r r e ,  d u  s o le i l  e t  d e  l a  p l a n è t e ,  à  

l ’é p o q u e  c o n s i d é r é e ;  E E ' l a  l i g n e  d e s  é q u i n o x e s ,  e t  S N  c e l le  d e s  n œ u d s .  S o i t  

p  l a  p r o j e c t i o n  d e  l a  p l a n è t e  s u r  l e  p l a n  E E 'S  d e  l ’é c l i p t i q u e .  D é s ig n o n s  p a r  l

Fig. 185.

la longitude pTE et par \  la latitude PTp de cet astre, par L la longitude STE 
du soleil, et par n celle du nœud ou l’angle SNE. Soit enfin représentée par 
t l’inclinaison du plan de l’orbite PSN sur celui de l’écliptique SNT. La lettre 
<l représentera, comme précédemment, la distance ST du soleil à la terre. 
Les inconnues que nous voulons calculer sont l’angle NSP =  a, et le rayon 
vecteur SP =  r  de la planète.

L’angle trièdre STNP détermine, sur la sphère dont S est le centre, un 
triangle T'FN', dans lequel le côté P 'N '= a , et le côté N'T' — n — L; puis 
l’angle N' est égal au supplément de l’angle » : si donc on représente par 9 
l’angle T', la trigonométrie sphérique donne, entre ces deux côtés et ces deux 
angles, la relation

cotang a sin (n — L) =  cos (n — L) X  cos (180° — i) +  sin (180° — t) cotang 9, 
ou cotang a sin (n — L) =  — cos (n — L) cos i  +  sin t cotang 9 .

D’ailleurs, le trièdre TSPp détermine, sur la sphère dont T est le centre, un 
triangle sphérique S'p'P", rectangle en p', et dans lequel le côté P" p' =  le 
côté S'p' =  L — /, et l’angle S '=  9 ; donc on a :

tang ).
Ung? =  sin (L —77 *

Substituant cette valeur dans la formule précédente, il vient :

. / r x / r n . . sin i  sin (L — t)cotang a sin (n — L) =  — cos (n — L) cos i H-------- tàngl------’

. x , sin i  sin (L—/)
d’où cotang a =  cos t cotang (n -  L) 4- tangXsin („ _  LJ  * <3’

Cette formule fournit l’angle a que le rayon vecteur de la planète fait avec 
la ligne des nœuds.
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6 1 8 . C a l c u l  d u  r a y o n  v e c t e u r  d ' u n e  p l a n è t e .  —  P o u r  c a l c u l e r  l a  l o n ­

g u e u r  d e  c e  r a y o n  lu i - m ê m e ,  a b a i s s o n s  d u  p o i n t  S  u n e  p e r p e n d i c u l a i r e  S H  s u r  

T p  ;  c e t t e  d r o i t e ,  s i t u é e  d a n s  l e  p l a n  d e  l ’é c l i p t i q u e ,  e s t  p e r p e n d i c u l a i r e ,  p a r  

c e t t e  c a u s e ,  a u  p l a n  P T p  ( c a r  c e  d e r n i e r  e s t  p e r p e n d i c u l a i r e  k l ’é c l ip t iq u e )  ; e l l e  

e s t ,  p a r  s u i t e ,  p e r p e n d i c u l a i r e  s u r  P H .  L e  t r i a n g l e  r e c t a n g le  P S H  d o n n e  d o u e r

S H  =  r  c o s  P S H

m a is  l e  t r i a n g l e  r e c t a n g l e  S T H  d o n n e  a u s s i  :

S H  =  d  s in  S T H  =  rf s i n  (L  —  / ) ;

o u  e n  c o n c lu t  s

*’ c o s  P S H  =  rf s i n  ( L  —  l )•

Il s u f f i t  d o n c ,  p o u r  a v o i r  r ,  d e  c a l c u l e r  l ’a n g le  P S H .  O r  le  t r l è d r e  S P N H  d é ­

t e r m i n e ,  s u r  l a  s p h è r e  d o n t  S  e s t  l e  c e n t r e ,  u n  t r i a n g l e  s p h é r iq u e  P ’N ’H ’,  

d a n s  le q u e l  P ’N ’ =  a,  N 'H ’ o u  l ’a n g le  N S H  =  I IV N  —  9 0 °  =  n  —  l  —  9 0 ° , e t  

l ’a n g l e  c o m p r i s  N ' =  180« —  i .  O n  a  d o n c ,  p o u r  d é t e r m i n e r  l e  t r o i s i è m e  c ô té  

H ' P" o u  l ’a n g l e  P S H ,  l a  r e l a t i o n ,

c o s  P S H  =  c o s  P S N  c o s  N S H  +  s in  P S N  s in  N S H  c o s  N ,  

o u  c o s  P S H  =  c o s  a c o s  («  —  l  —  9 0 ° ) —  s in  a  s in  (n —  l  —  9 0 ° ) c o s  t .

o u  e n f in  c o s  P S H  =  c o s  a s in  [ n —  l) + s i n  a  c o s  ( n —  / )  c o s  t.

C e t te  v a l e u r ,  s u b s t i t u é e  d a n s  c e l le  d e  r ,  d o n n e  !

r = ________________d s m ( L - l ) ________________ (4 )
c o s  u s ]u  —- / ) - f - s i n  u  c o s  (n  —  l ) c o s i * 1

C o m m e a  e s t  c o n n u  d ’a p r è s  l a  f o r m u l e  (3 ) , c e t t e  f o r m u l e  (4) f a i t  c o n n a î t r e  l a  

v a l e u r  d e  r .

C e s  d e u x  f o r m u le s  p e r m e t t r o n t  d o n c  d e  c a l c u l e r  à  c h a q u e  i n s t a n t  l a  p o s i­

t i o n  d e  l a  p l a n è t e  s u r  s o n  o r b i t e  ; e l le s  f e r o n t  d o n c  c o n n a î t r e  t o u t e s  l e s  c i r ­

c o n s t a n c e s  d e  s o n  m o u v e m e n t .  C ’e s t  e n  s u i v a n t  c e t t e  m a r c h e  q u e  K é p le r  a  

p u  d é t e r m i n e r  le s  lo i s  q u i  p o r t e n t  s o n  n o m ,  e t  q u i  r é g i s s e n t  le s  m o u v e m e n t s  

d e s  p l a n è t e s  ( n °  3 4 6 ) .

NOTE XXX (n° 3S8, p. 254).'

Calcul îles éléments elliptiques des planètes

6 1 9 . P r e m i è r e  m é t h o d e  p o u r  r é s o u d r e  l e  p r o b l è m e .  —  L e s  c a lc u l s  

e x p o s é s  d a n s  l a  n o t e  p r é c é d e n te  r e n f e r m e n t  t o u s  le s  é l é m e n t s  d e  l a  s o lu t io n  

d u  p r o b lè m e .  E n  e f fe t ,  n o u s  a v o n s  a p p r i s  (n °  6 1 4 )  à  d é t e r m i n e r  l a  lo n g i tu d e  n
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du nœud ascendant de la planète; puis nous avons calculé (n° G15) l’inclinai­
son i du plan de l’orbite sur le plan de l’écliptique ; enfin, nous avons déter­
miné (n”« 617 et 618) les coordonnées polaires de la planète dans l’une de 
ses positions, c’est-à-dire sa distance r au soleil, et l’angle a que ce rayon 
vecteur fait avec la ligne des nœuds. Or, supposons qu’à deux autres époques 
quelconques, on mesure de même les coordonnées de la planète dans 
deux autres positions. Ou connaîtra ainsi trois points de l’ellipse qu’elle par­
court ; et, comme son foyer est le lieu occupé par le soleil, ces trois positions 
suffiront pour déterminer la courbe entière, et les dimensions de ses axes, 
ainsi que leur direction. D’ailleurs la révolution sidérale se peut déduire de 
la longueur du grand axe, et la loi des aires donnera à chaque instant la 
position de la planète sur son orbite. Le problème sera ainsi complètement 
résolu.

620. Inconvénients de cette méthode. — Mais on a dû remarquer que 
cette solution exige des observations faites à des époques et dans des cir­
constances particulières. Car, pour déterminer l’angle n, il a fallu attendre 
que la planète fut à son nœud, et l’observer dans cette position ; pour mesurer 
l’inclinaison t, il a fallu choisir l'époque où la longitude du soleil était égale à 
celle du nœud. On comprend combien ces circonstances doivent apporter 
d'embarras dans la recherche du mouvement de la planète. Il est donc avan­
tageux d’avoir un autre procédé, qui permet de déduire les six éléments 
elliptiques de trois observations quelconques de l'astre.

621. Deuxième méthode. — Or, soient n la longitude du nœud ascen­
dant; il'inclinaison du plan de l’orbite sur celui de l'écliptique; a la longueur

du demi-grand axe, et e l’excentrité ; a 
l’angle que le grand axe fait avec la ligne 
des nœuds; 0 le temps écoulé depuis le pas­
sage au périhélie jusqu’au moment de l’ob­
servation. Désignons, en outre, par p et u>, 
suivant l’usage, les coordonnées polaires de 
la planète à ce moment, c’est-à-dire le 
rayon vecteur SP (fig. 186) et l’angle PSN 
que ce rayon fait avec la ligne des nœuds. 

On a trouvé (note précédente, n0'  617 et 618) entre ces deux coordonnées, ap­
pelées alors r  et a ,  les deux relations

■ . , , ,  , sin 1 sin fl. — /1 ,,,cotang <o =  -  cos . cotang (n -  L) +  taugXsiu _ I J  > CD

______________d  sin (L — l)____________ (2.
0 cos tu sin (n — l) -+- sin w cos (n — l) cos t ’

dans lesquelles les longitudes L et /  du soleil et de la planète, et la latitude 
\  de celle-ci sont données par l’observation, tandis que d, distance de la terne 
au soleil, a été déterminée antérieurement.

D’un autre côté, la deuxième loi de Képler assignant à la planète une orbite
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elliptique dont le soleil occupe le foyer, on a, d’après les premiers éléments de 
la géométrie analytique,
elliptique dont le soleil occupe le loyer, on a, a apres les premiers eiemenis ae 
la géométrie analytique,

p =  (3)
1 +  e cos (co— a)

Enfin, la loi des aires fournit une quatrième équation entre les mêmes 
éléments ; car si A est le périhélie, et P la position actuelle de l’astre, le 
secteur décrit dans le temps 8 sera ASP, et l’aire décrite pendant la durée T 
de la révolution sidérale, durée qu’on peut exprimer en fonction de a 
(n. 388), est celle de l’ellipse entière. Or, cette dernière est égale à 
ita 'l/ 1  —e1. Quant au secteur décrit, on peut le calculer en fonction de p 
et de (ta — a), de a et d e e ,  à l’aide du calcul intégral. Si donc on représente 
son expression par s — f  (p, ta — a, a, e), la loi des aires fournira la pro­
portion :

s_____  8
ua’ j /  1 — e T  ̂ ^

Si, entre ces quatre équations, on élimine p et ta, il reste deux équations entre 
les six inconnues, n, i, a, e, a, 0. Deux autres observations, faites à deux 
autres époques plus ou moins rapprochées, fourniront chacune deux nou­
velles équations entre ces inconnues. On aura ainsi six équations pour ré­
soudre le problème.

Ainsi trois observations quelconques suffisent pour déterminer le mouve­
ment de la planète; mais, pour obtenir une plus grande précision, on en fait 
un grand nombre : chacune d’elles fournit deux équations de condition, et 
on applique à ces équations, pour obtenir les éléments avec la plus grande 
approximation, la méthode dite des moindres carrés.

NOTE XXXt (n» 379, p. 267).

Rapport des distances (le Vénus au Soleil et à la  terre.

622. On peut déterminer facilement le rapport des distances de Vénus 
au soleil et à la terre, à l’époque de la conjonction, sans avoir besoin de 
connaître ni l’une ni l’autre distance. En effet, il est évident (fig. 118, p. 268) 
que l’on a :

AV _  AV-f VV' AV' _  ,
VV' — yy< V V'

Le rapport cherché dépend donc du rapport yy, des distances de la



terre et de Vénus au soleil. Or, si l’on désigne par p et p' ces distances, la 
deuxième loi de Képler donne :

a (1 — e») , a’ (1-e"-)
^ 1 +  e cos (to — a ) ’  ̂ 1 + e ' cos (to' — a') ‘

Donc leur rapport -, dépend du rapport - ,  et de quantités que l’on sait 
P «

as T2déterminer avec précision. D’ailleurs la relation =  ^  fait connaître 

—, : donc le rapport -, est déterminé. On en conclut -, — ). et, par suite, laa' p p' ’
parallaxe du soleil, comme nous le disons (n° 379).
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NOTE XXXII (a0 385, p. 272).

Phases des planètes supérieures.

623. Calcul de l’échancrure pour Mars, Jupiter et Saturne. -  Soit P 
(fig. 187) la position d’une planète supérieure sur son orbite, et soit T celle 

de la terre. Dans le triangle STP, l’angle P 
est égal à l’angle VPE, mesure du fuseau 
non éclairé de la planète, mais visible du 
point T. Or, cet angle est aigu dans toutes 
les positions de l’astre, puisqu’il n’est pas 
opposé au plus grand côté du triangle. D’ail­
leurs, ce triangle donne i

d’où

sinP ST 
sin T ~  SP ’

STsin P =  — sin T.

D’après cette formule, l’angle P a sa plus grande valeur lorsque T =  90°,
STc’est-à-dire, lorsque la planète est en quadrature : alors sin P =  —  • U est 

donc facile de calculer l’angle P pour chaque planète. Ainsi ;

Pour Mars, sillP =  _ J _ ;

donc

log sin P =  T,8171033}
et, par suite,

P =  41° 1' 10" environ.



ADDITIONS. 427

De même, pour Jupiter, sin P =  , log sin P =  1,2837053.

et P =  11° 4' 50" environ.

Enfin, pour Saturne, P =  ÿ &8g8. , log sin P =  7,0205010,

et P =  6° 1' environ.
Mais l’arc du fuseau obscur se projette sur le diamètre en VI ; et cette pro­
jection orthographique mesure pour nous l’échancrure apparente du disque

* p
de la planète. Or, VI =  1 — cos P =  2 sin* — , en prenant le rayon de la pla­

nète pour unité. Donc on a :

Pour Mars, VI =  2 sins 20» 30' 35" =  0, 24550,
Pour Jnpiter, VI =  2 siu2 5° 32' 25" =  0,018642,
Pour Saturne, VI =  2 sin* 3» 0’ 30" =  0,0355085.

NOTE XXXIII (n° 420, p. 291).

De l ’aberration île la lumière.

624. Mouvement annuel des étoiles. — Lorsqu’on observe attentive­
ment les étoiles, on trouve qu’elles ne sont pas fixes, et qu’elles paraissent dé­
crire annuellement un petit cercle dont le diamètre sous-tend un angle d’en­
viron 40", 890. Ce cercle se projette sur la sphère céleste suivant une ellipse 
d’autant plus aplatie que la latitude de l’étoile est plus petite ; mais son grand 
axe est, pour chacune, de 40,"890. Cette constance ne permet pas d’attribuer 
le mouvement apparent à la parallaxe annuelle de l’étoile (note III): car cette 
parallaxe est d’autant plus petite que l’étoile est plus éloignée; et le cercle 
qu’elle parait décrire en conséquence suit la même loi. Do plus, la parallaxe 
nous ferait voir l’astre dans la partie de son cercle annuel opposée à celle 
de l’écliptique dans laquelle nous nous trouvons; tandis que l’observation 
constate que nous le voyons à 90° en arrière de cette position.

623. Rapport des vitesses de la lumière et de la te rre . — Bradley, 
qui a découvert ce phénomène, anquel on donne le nom à.'aberration, en a 
trouvé l’explication réelle dans le rapport des vitesses de la lumière et de la 
terre. En effet, si nous désignons par d le rayon de l’orbite terrestre, que nous 
supposerons circulaire, la lumière parcourt cette distance en 498» 1)); 

,, ddonc, en 1®, elle parcourt —  . D’un autre côté, la terre parcourt

%izd
2r.d en une année sidérale ; donc, en un jour, elle parcourt ,

u O D j i D O o I

(1) Plus exactement, en 497»,77.



et' 6n V ’  365,26631¾ 8.J4ÏÏÔ’ Le rapP°rt deS deUX Vite93eS est donC
3G5,2'637 X88400

^  X  498----- ’ °U 10000 e" T,r0n-

Ainsi la  v ite s s e  d e  la  lu m iè r e  v a u t  à  p eu  p r è s  1000 fo i s  c e lle  d e  la  te r r e .  

C26. Position apparente d'un astre fixe, conséquence de ce rap. 
port. — Or, concevons (fig, 188) qu’un rayon lumineux, parti d'une étoileA- 
vienne frapper l’œil de l’observateur M, dans la direction AM, avec sa grande
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vitesse, pendant que celui-ci est en mouvement, suivant la tangente MT à son 
orbite, avec une vitesse dix mille fois moindre. Nous ne chargerons rien à l’im­
pression que reçoit l’observateur, si nous lui donnons, ainsi qu’au rayon lumi­
neux, un mouvement commun égal et de sens contraire à celui qu'il possède 
sur son orbite ; cela résulte des premières notions de la mécanique. Mais, 
par cette hypothèse, nous ramenons l’observateur au repos, c’est-à-dire à 
l’état qu’il croit être le sien. L’observateur reçoit donc la même impression 
que s’il était immobile, et que si le rayon lumineux avait deux vitesse, l’une 
dirigée suivant MX, et l’autre 10000 fois plus petite et dirigée suivant MG. Si 
donc on prend deux longueurs Ml et MG, telles que MI =10000 MG, et qu’on 
achève le parallélogramme MIDG, MD sera, d’après les lois de la composition 
des vitesses, la direction dans laquelle il percevra la sensation du rayon lu­
mineux. L’astre lui paraîtra donc dans le prolongement MA'de cette direction, 
c’est-à-dire en avant de sa position réelle d’un angle égal à AMA\ C'est à 
cet angle qu’on donne le nom d’aberration.

627. Explication de l’aberration dans le cas le plus simple. — D’a­
près cela, soit (fig. 189) TT' l’orbite annuelle de la terre, que nous supposons
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circulaire ; et soit A la position vraie d’une étoile placée au pôle de l’écliptique. 
Si la terre se trouve en T, l’étoile lui paraît en un point A', en avant de sa position 
réelle, et tel que TA =  10000 AA'. Le plan TGAA' 
peut être considéré (à cause de la distance considé­
rable TA, comparée à TO), comme perpendiculaire 
à l’écliptique, et, par suite, comme perpendicu­
laire à OT. A mesure que la terre se meut vers T', 
ce plan se déplace sans cesser d’être perpendicu­
laire au rayon de l’écliptique ; et comme l’angle 
ATA' reste constant, le point A' parait décrire, au­
tour du point A, un petit cercle parallèle à ce 
grand cercle, et dont le rayon est AA'. D’ailleurs, 
pour chaque position T de la terre, le rayon cor­
respondant AA' est parallèle à la tangente TG, et 
par suite perpendiculaire sur OT. Donc l’étoile et 
la terre paraissent occuper à chaque instant, sur 
leurs orbites respectives, des positions A' et T dis­
tantes anguiairement de 00°, ce qui est conformo 
à l’observation. D’un autre côté, on peut facile­
ment calculer le rayon AA' ou plutôt l’arc qu’il 
sous-tend : car, en désignant par x  la valeur de cet 
arc en secondes, et remarquant que A T =  10000

tc A T 'vAA', on voit que sa longueur est égale à — ,

. Ï0000 TT. AA', x  , 
o u à ----- oiisiïuü - - : donc

i B 0ft *• AV- * =  AA’; d’où « =  £12229 =  20G2G5 =
018000 IOOOOtv 10000 ’

Telle est la valeur du rayon de l’orbite apparente décrite par l’étoile : l’ob­
servation donne 20", 445. On voit donc que le pliénomèmo de l’aberration est 
complètement expliqué par la comparaison des vitesses de la lumière et de la 
terre.

«28. Aberration annuelle pour une étoile quelconque. — Si l’étoile 
n’est pas située au pôle de l’écliptique, le rayon lumineux AT n’est plus 
perpendiculaire, en général, sur la tangente TH. Le triangle ATA' donne 
alors :

sin TA'A _  AA’ _  1
sin TA’A TA _  10000 ’

or, l’angle ATA' d’aberration, étant très-petit, peut être substitué à son 

sinus ; d’ailleurs, ou tire de l’une des égalités précédentes, =  y^1 ;
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d’où l’on voit (]ue — est la longueur de l’arc x  dans le cercle du rayon 1 ; 

on lui substituera la valeur 20",445, et l’on aura:

ATA' =  20",445 X  sin TA’A, 

ou AT A’ =  20",445 X  sin ATI!,

car l’angle ATH diffère très-peu de l’angle TA'A. Donc, en général, l’aber­
ration, pour une étoile quelconque, est égale à un angle de 20",445, raulti- 
dlié par le sinus de l’angle que la direction du rayon visuel mené à l’étoile 
fait avec celle du mouvement de la terre.

Ainsi l’aberration dépend de la direction de la terre dans son mouvement 
de translation autour du soleil ; et, comme cette direction change à chaque 
instant, l’angle ATH varie perpétuellement. Le maximum correspond à 
ATH =  90°, et est, pour toutes les étoiles, ATA'=  20",445. Le minimum a 
lieu lorsque ATA' est minimum, c’est-à-dire lorsque ATH est égal à la latitude

de l’étoile; alors ATA'=  20",445 sin X. Ainsi le lieu des positions appa­
rentes de l’astre est une ellipse d’autant plus aplatie que sa latitude est plus 
petite; mais le demi-grand axe de cette ellipse sous-tend toujours un angle 
de 20",445. Ce résultat est d’accord avec l’observation.

029. Aberration diurne. — Le mouvement de rotation de la terre sur 
son axe doit produire des effets analogues ; mais, la vitesse de ce mouvement 
étant plus de 60 fois moindre que celle du mouvement de translation, même 
pour l’habitant de l’équateur, l’aberration maximum, due à cette cause, ne 

20" 445 1sera que — A-—  > ou -  de seconde environ. On a coutume de négliger cette

quantité dans les calculs astronomiques.
630. Preuve du mouvement de translation de la te rre . — L’aberra­

tion, ainsi comprise, est une des preuves les plus évidentes du mouvement 
de translation de la terre autour du soleil. Car, si la terre était immobile en T, 
une étoile A serait vue constamment dans la direction TA, quelle que fût la 
vitesse de la lumière, et cette étoile paraîtrait immobile. Son mouvement 
apparent démontre donc matériellement celui de la terre.

631. Aberration des planètes. — 11 existe aussi un angle d’aberration 
pour les planètes et pour les astres qui ont un mouvement propre ; mais on le 
détermine moins simplement que celui des étoiles; car il dépend des trois vi­
tesses de la lumière, de l’astre et de la terre.

Soit p la position apparente de la planète (flg. 190), au moment où la 
terre est en T sur son orbite TT' : l’observateur la voit dans la direction Tp. 
Mais Tp n’est pas la vraie direction du rayon lumineux parti de la planète : 
pour l’obtenir, il faut, d’après la théorie qui précède, mener à TT', par le 
point p, une parallèle pP, dirigée en sens contraire du mouvement de la 
terre, et prendre sur cette droite une longueur pP égale au chemin que décrit 
la terre pendant le temps que la lumière parcourt pT. Si l’on joint PT, cette
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droite sera la direction vraie du rayon qui vient frapper l’oeil. Ainsi la planète 
était en P, lorsqu’elle a lancé le rayon qui parvient en T dans la direction 
apparent ;/T. Mais pendant le temps qui s’est écoulé depuis son émission 
jusqu’à son arrivée en T, la planète a parcouru 
sur son orbite un arc PP'; et elle est en P', quand 
nous la voyons en p. L’angle d’aberration totale est 
donc P'Tp. Or, le triangle P'pT donne:

sin P'T/>  PV
si n P'pT P'T ’

ou, en remplaçant sin P'Tp par l’arc,

PTp =  ^ s i u  P'pT.

P'p est, en grandeur et en direction, la résultante 
du mouvement de la planète et d’un mouvement 
égal et contraire à celui de la terre, ou ce qu’on 
appelle le mouvement relatif de la planète (la terre 
étant supposée immobile) ; P'T est le mouvement 
de la lumière ; donc :

L 'aberration  d ’une p lanète  es t éga le  au  ra p p o rt d e  la  vitesse re la tive  de la  
p la n è te  e t de la  vitesse de la  lu m ière , m u ltip lié  p a r  le s inus de f  ang le  gue  

-  Les d ire c tio n s  d e  ces vitesses fo n t  en tre  e lles.
652. Preuve de la rotation de la  terre sur son axe. — Le mouve­

ment de rotation de la terre donne lieu aussi à une aberration des planètes; 
comme ceteffet est négligeable pour les étoiles (n° 029), il doitaussi l’être poul­
ies planètes, puisqu’il ne dépend que du rapport des vitesses. Mais il n’en 
serait pas de même si la terre était immobile et que la sphère céleste tournât 
autour d’elle en vingt-quatre heures : alors la vitesse de chaque planète serait 
compai-able à celle de la lumière, comme Test la vitesse de translation de la 
terre; de plus, cette vitesse serait très-variable, puisque les distances à la 
terre varient dans un rapport considérable. Il y aurait donc, pour ces astres, 
une aberration diurne fort appréciable. La non-existence de cette aberration 
est une preuve de l’immobilité de la sphère céleste et du mouvement de rota­
tion de la terre autonr de son axe.

635. Erreur relative au lever des astres. — Un astre en mouvement, à 
une certaine distance de nous, ne nous apparaît pas, en général, en son lieu 
véritable. Quelques auteurs en ont conclu que, lorsqu’un observateur voit le 
soleil à l ’horizon, il y a déjà 8m 18* qu’il est levé en réalité; et que, par 
(Onséquent, s’il était seulement cent fois plus loin de nous, nous le verrions 
se lever au moment où il se couche. C’est là une erreur ; car le lever du soleil 
n’est pas dû à un mouvement propre de cet astre, mais au mouvement de ro­
tation de la terre sur elle-même. Le soleil est fixe en S (fig. 191); et au mo­
ment où, par suite de la rotation de la terre T, l’horizon de l’observateur A 
vient le rencontrer, cet observateur reçoit le rayon SA lancé 8“ 18’ aupa-
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ravant dans cette direction SA. D'ailleurs son mouvement autour de l’axe est 
dirigé, à ce moment, suivant la tangente en A au parallèle qu’il décrit en 
24 lienres. Ainsi les deux vitesses, et, par suite, leur résultante, sont dans le

plan de l’horizon : le soleil lui apparaît donc à l’horizon, lorsqu’il y est réel­
lement. Seulement, il n’apparaît pas toujours au point de l’horizon où il se 
trouve en réalité ; mais, comme nous l’avons dit, la différence est au-dessus 
d’un tiers de seconde.

FIN DES ADDITIONS.
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D escription du Cosmographe inventé et construit par 
M. OUVIÈRE.

fVuir la planche à la Un du volume.)

Le Cosmographe, ou Uranoscope, se compose essentiellement de deux 
grands cercles égaux, en fonte, dont les plans sont perpendiculaires entre 
eux, et dont les centres se confondent. L’un d’eux est vertical et repré­
sente, lorsqu’il est orienté, le plan du méridien ; l’autre fait avec l’horizon 
un angle égal au complément de la hauteur du pôle pour le lieu où il e3t 
installé, et représente l'équateur céleste. Le premier est traversé diamétra­
lement par une tige en fer, qui figure l’axe du monde, et qui, par suite, est 
perpendiculaire an plan de l’équateur. Différentes verges, soudées au 
cercle du méridien, indiquent à l'oeil le zénith, les tropiques du Cancer et du 
Capricorne, les cercles polaires. La longueur de la tige qui représente l’axe 
du monde est calculée de telle manière, que l'oeil placé à son extrémité 
inférieure voit la circonférence intérieure de l’équateur se projeter dans le 
ciel sur le cercle polaire boréal.

Lorsque le Cosmographe est installé dans un lieu déterminé, il montre 
aux yeux les directions de l’axe du monde, de l’équateur céleste et du 
méridien du lieu. 11 rend sensibles les lois du mouvement diurne apparent 
des étoiles, leurs passages successifs au méridien, leurs déclinaisons bo­
réales ou australes, leurs ascensions droites, le mouvement propre apparent 
du soleil et les variations de sa déclinaison, les époques des équinoxes et 
des solstices. Le Cosmographe est un véritable cadran solaire équatorial, 
car les heures sont marquées sur la circonférence intérieure de l’équateur; 
et l’ombre de la tige qui représente l’axe du monde se porte successivement 
sur les divisions de cette circonférence.

Le Cosmographe peut donc être regardé comme un observatoire popu­
laire, et même comme le seul possible pour les places publiques, les jar- 

cosji . c. 28
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dins, etc. On l’oriente en chaque lieu, avec une extrême facilité, en se con­
formant à quelques règles élémentaires.

Cette courte analyse suffit pour montrer toute l’utilité que présente le 
Cosmographe pour l’étude et pour l’enseignement de la Cosmographie.

Le premier grand modèle a été donné par M. Oovière, au lycée Napo­
léon, à Paris, et installé par lui dans l’une des cours de cet établissement. 
Un autre orne la terrasse du lycée du Prince Impérial, à Vanves. En outre, 
l’appareil a été adopté par plusieurs villes du midi de la France, notamment 
par Montpellier, Sorrèze, Aix, Vannes, Nice, Nîmes, Draguignan, etc. Il est 
installé sur la place publique. Enfin M. Ouvière a réduit le Cosmographe en 
un petit modèle, mobile autour d’un axe horizontal, et que chacun peut 
orienter et disposer suivant la latitude du lieu d’observation. On peut exa­
miner ces charmants appareils chez M. Lamotte-Lafleur, éditeur, 88, rue 
Saint-Martin.

FIN
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